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Abstract

Social networks are very popular nowadays and the un-
derstanding of their inner structure seems to be promising
area. Several approaches for the social network structure
visualization has been proposed and the typical problem is
the schematic value of such visualization and the compu-
tational complexity of their analysis. This paper propose
a method by using the relation between objects, which is
reduced and uses as an input to Formal Concept Analysis
methods. The proposed method attempts to deal with both
mentioned problems.

1 Introduction

The social network is a structure made of nodes (of-
ten representing persons), which are tied together by some
kind of relationship (representing for example friendship).

The availability of this type of data has grown signifi-
cantly due to the immense growth of internet access, be-
cause many online systems based on user interaction could
be viewed as social networks. Visualization of these net-
works is not only attractive, but can be also the basis for
discovering terrorist networks or making some managerial
decisions.

Thus are several types of visualization schemes and for
a good overview covering both computer based and hand
drawn methods, please consult [3]. The main purpose of
network visualization is to give a quick overview of the net-
work structure and also to show what is not apparent di-
rectly from the data. There are also some applications for
realtime visualization and navigation created Yun and Bo-
qin [6]). [12] noticed the limitation of classical graphs when
using them for social networks visualizations.

As the social network is based on the relationships, we
may think of using Formal Concept Analysis, a well estab-
lished method for analysis of tabular data [5], [4], [13]. Due

to the massive dimensions of the real-world social networks,
we may run into computational complexity troubles and the
illustrative value is often a puzzle. Several research works
are dealing with this problem [2]. Rice et al. [10] used a
clustering approach for generating parts of the concept lat-
tice.
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Figure 1. Social network graph and the corre-
sponding lattice before reduction

The proposed approach differs in using a combination
of two methods. We reduce the input data using matrix
factorization methods before analyzing them. In this paper,
a Singular Value Decomposition method is used, but also
other methods may be considered (see [7] for Non-negative
matrix decomposition). Another aspect worth mentioning
is that we can also consider the strength of relationship be-
tween subjects. This leads to a matrix consisting of real
numbers. For performance and clarity reasons, we consid-
ered the binary case only (that means the subjects are or are
not related), but the proposed approach is relatively general
and can be used in similar manner for fuzzy relations [1].

The paper is organized as follows. In Section 2, we in-
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troduce the basics of formal concept analysis and singular
value decomposition followed by an illustrative example in
Section 3. Experiment results are reported in Section 4 and
some conclusions are provided towards the end.

2 Preliminaries

2.1 Formal concept analysis

Formal Concept Analysis (shortly FCA, introduced by
Rudolf Wille in 1980) is based on the understanding of the
world in terms of objects and attributes. It is assumed that a
relation exists to connect objects to the attributes they pos-
sess.

A formal context C = (G,M, I) is a triplet consisting
of two sets, G and M , with I in relation to G and M . The
elements of G are defined as objects and the elements of M
are defined as attributes of the context. In order to express
that an object g ∈ G is related to I with the attribute m ∈
M , we record it as gIm or (g, m) ∈ I and read that object
g has the attribute m.

For a set A ⊆ G of objects we define A
′

= {m ∈ M |
gIm for all g ∈ A} (the set of attributes common to the
objects in A). Correspondingly, for a set B ⊆ M of at-
tributes we define B

′
= {g ∈ G | gIm for all m ∈ B}

(the set of objects which have all attributes in B).
A formal concept of the context (G, M, I) is a pair

(A,B) with A ⊆ G, B ⊆ M , A
′

= B and B
′

= A.
We call A the extent and B the intent of the concept
(A,B). B(G,M, I) denotes the set of all concepts of con-
text (G,M, I) and forms a complete lattice (so called Gal-
lois lattice). Reader may consult [5] for more technical de-
tails and [9] for the connection between graphs and FCA.

2.2 Singular Value Decomposition

Singular value decomposition (SVD) is well-known be-
cause of its application in information retrieval. SVD is es-
pecially suitable in its variant for sparse matrices [8].

Theorem 1. Let A is an m × n rank-r matrix. Let
σ1 ≥ · · · ≥ σr be the eigenvalues of a matrix

√
AAT .

Then there are orthogonal matrices U = (u1, . . . , ur) and
V = (v1, . . . , vr), whose column vectors are orthonormal,
and a diagonal matrix Σ = diag(σ1, . . . , σr). The decom-
position A = UΣV T is called singular value decomposi-
tion of matrix A and numbers σ1, . . . , σr are singular val-
ues of the matrix A. Columns of U (or V ) are called left (or
right) singular vectors of matrix A.

Now we have a decomposition of the original matrix A.
We have at most r non-zero singular numbers, where rank
r is the smaller of the two matrix dimensions. Because

the singular values usually fall quickly, we can take only k
greatest singular values and corresponding singular vector
coordinates and create a k-reduced singular decomposition
of A.

Let us have k, 0 < k < r and singular value decompo-
sition of A. We call Ak = UkEkV Tk a k-reduced singular
value decomposition (rank-k SVD).

Theorem 2. (Eckart-Young) Among all m×n matrices C of
rank at most k, Ak is the one, that minimises ||Ak−A||2F =∑
i,j

(Ai,j − Cw,j)2.

Briefly said, SVD allows us to decompose one matrix
into several others. By multiplying them back we can obtain
the original matrix. Another choice is to remove some part
of decomposed matrices before the multiplication, which
will give us matrix similar to the original one.

Note: From now on, we will assume rank-k singular
value decomposition when speaking about SVD.

3 Illustrative Example

User U1 U2 U3 U4 U5 U6 U7
U1 (1) 0 0 0 0 0 0
U2 0 1 1 0 1 1 0
U3 0 1 1 0 1 (0) 0
U4 0 0 0 1 0 0 1
U5 0 1 1 0 1 1 0
U6 0 1 (0) 0 1 1 0
U7 0 0 0 1 0 0 1

Table 1. Social network incidence relation

Social network can be modeled of as a set of subjects, in
which some of them has some relationship with others. This
can be formalized as a classical mathematical relationship
and visualized for example as a undirected graph.

Table 1 depicts a a very simple system with 7 users.
Users U4 and U7 know each other. User U1 does not know
any other user. Users U2, U3, U5 and U6 knows each other
with one exception and user U3 does not know user U6. The
same table can be used as an incidence relation for graph,
which is illustrated in the left part of Figure 1.

Now we can employ methods of FCA to illustrate the
inner structure of the data. Concept lattice formulation is il-
lustrated on the right side of Figure 1. Each node represents
one concept from the lattice. The extent of the concept is
depicted on the top of every node and the corresponding in-
tents are noted down below the nodes. Both the graph and
the lattice are quite illustrative, but if we consider bigger
systems consisting of hundreds of users, the illustration be-
comes very chaotic (Please see Figure 3).
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Figure 2. Social network graph and corre-
sponding lattice after reduction

At this point, we use the binary matrix factorization and
as illustrated in [11], we reduce the binary table using SVD.
At some setting of rank, the same table is obtained with
three cells changed. These cells are highlighted by paren-
thesis in the aforementioned original table.

As evident, the reduction have added relationship be-
tween users 3 and 6. That is quite natural because if two
users are connected to the same users, they will probably –
in some way – be connected to themselves. The reduction
also changed the relationship of user 1 to itself. Modified
graph is illustrated in Figure 2. In this case, the reduction
created a graph clique.
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Figure 3. Concept lattice from original data

On the right side of Figure 2, the modified concept lattice
is illustrated, which can be computed faster and well reflects
the situation, that in the original data have contained two
interesting groups.

Another interesting aspect is from the diagonal of the

matrix ( represents the incidence relation), which is all
unity. This can be interpreted as everybody is in a rela-
tionship with themselves. This is quite natural and also
has practical advantage, for example: group of users which
know themselves can share the same attribute signature.

4 Experiments

We may consider data from some real system containing
relations between hundreds of users. In such case, we do not
need the exact results, because they will be uncomputable
using standard FCA methods and it will be unmanageable
to have a detailed analysis at the results. The usage of our
proposed method is sound from this point of view.

As a social network, we considered the data obtained by
the Federal Energy Regulatory Commission’s investigation
of Enron corporation (so called Enron corpus1). We have
taken the e-mail recipients as persons in the constructed so-
cial network and created a relationship between them if they
have exchanged some predefined amount of messages. For
better illustration and computational processing, we have
selected only users, which were in contact with several other
users. From the same reason, we had to select only some
amount of them. More precisely, we have obtained a binary
square matrix with 150 rows/columns, with ones on the di-
agonal and more then 7 ones in a row. Visualization of this
matrix using FCA as concept lattice is depicted in Figure 3.
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Figure 4. Reduced concept lattice (rank 15)

Using the procedure illustrated in Section 3, we can re-
duce the input matrix and compute the reduced concept lat-

1see http://arg.vsb.cz/arg/Enron Corpus/default.aspx for more details
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tices. Using different ratios of reduction, we can get several
lattices and some of them are illustrated in figures 4, 5 and
6. The interpretation of the created concepts depends on the
content of the communication itself and we are not dealing
with this in this paper.

5 Conclusions

We have proposed a nocel approach to overcome some
practical issues when dealing with analysis and visualiza-
tion of large scale social networks data. Our preliminary re-
sults indicate that the approach is helpful for solving these
issues but only further detailed experiments can prove this.

As future work, we would like to focus on bigger net-
works and interpretation of the analysis within some limited
area.
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