



Abstract— This paper presents an application of

swarm intelligence technique namely Artificial Bee

Colony (ABC) to design the design of the Beta Basis

Function Neural Networks (BBFNN). The focus of this

research is to investigate the new population meta-

heuristic to optimize the Beta neural networks

parameters. The proposed algorithm is used for the

prediction of benchmark problems. Simulation

examples are also given to compare the effectiveness of

the model with the other known methods in the

literature. Empirical results reveal that the proposed

ABC-BBFNN have impressive generalization ability.

I. INTRODUCTION

he neural networks have been effectively applied in

many areas, such as time series prediction [1,2,3],

pattern recognition [4], approximation function [5,6,28],

etc. Among the artificial neural networks, the beta basis

function neural networks (BBFNN), represents an

interesting alternative in which we can approximate any

function [7]. The BBFNN network is a three –layer feed-

forward networks that generally uses a linear transfer

function for the output units and a non-linear transfer

function (the beta function) for the hidden units. In spite of

a number of advantages of BBFNN such as better

approximation capabilities [8], faster learning algorithms

and simple network topologies; especially the

determination of the optimal number of hidden nodes is

the most critical task. The development of BBFNN still

involves difficulties in optimizing the topology of the

network structure (the number of nodes). Today,

hybridization in soft computing is becoming a promising

research field of computational intelligence focusing on

synergistic combinations of multiples soft computing

methodologies an intelligent system. In order to overcome

the soft computing method [9-11], the investigation of

hybrid approaches will be necessary. In particular, in order

to overcome the challenge in developing the neural

network, the evolutionary algorithm is applied to optimize

the structure of the neural network system. There are

H. Dhahri is with University of Sfax, ENIS, Department of Electrical BP
W-3038, Sfax, Tunisia, Tel +216-74-274-088,

 e-mail: habib.dhahri@ieee.org.

A.M. Alimi is with University of Sfax, ENIS, Department of Electrical
BP W-3038, Sfax, Tunisia; Tel +216-74-274-088,

Fax. +216-74-275-595, e-mail adel.alimi@ieee.org.

A. Abraham is with Faculty of Electrical Engineering and computer
science, Technical University of Ostrava, Czech Republic,

Machine Intelligence Research Labs (MIR Labs), Scientific Network for

Innovation and Research Excellence (SNIRE), WA, USA,
e-mail ajith.abraham@ieee.org

several works that deal the problem of neural network

design [12-15]. The applying of evolutionary algorithms to

construct neural nets is also well known in the literature.

The most representative algorithms include genetic

algorithms (GA) [16][46], particle swarm optimization

(PSO) [17,18,19], the differential evolution (DE)

[2,3,17,20,21,22,23], flexible neural trees [47,48]. In [24],

ABC is used to optimize a large set of numerical test

functions and the results produced by ABC algorithm are

compared with the results obtained by genetic algorithm,

particle swarm optimization algorithm, differential

evolution algorithm and evolution strategies. Results show

that the performance of the ABC is better than or similar

to those of other population-based algorithms with the

advantage of employing fewer control parameters.

In this paper, we investigate the advantages of the

artificial bee colony (ABC) optimization algorithm to the

population-based metaheuristic on training the beta basis

function neural networks (BBFNN) for the prediction of

benchmark problems which are widely used in the

machine learning community. The performance of the

ABC algorithm is compared with other well-known

conventional and evolutionary algorithms. The results

indicate that that ABC algorithm can efficiently be used on

training beta basis function neural networks.

The paper is organized as follows: in Section 2 we briefly

present the basics of BBFNN. In Section 3, we explain the

fundamental concept of ABC algorithm and how ABC

algorithm is used to design of BBFNN. In Section 4, the

experimental results using benchmark problems are given.

Finally, in Section 5 we present the conclusions of the

work.

II. BBFNN NETWORK

In this Section, we introduce the beta basis functions

neural network that will be used in the remainder of this

paper. The BBFNN usually consists of three layers the

input layer, the BBF layer (hidden layer) and the output

layer. The input layer simply transfers the input vector

 1 2
, ...,,

T

n
x x x x through scalar weights to the next

layer. Thus the whole input vector appears to each neuron

in the hidden layer. Each hidden nodes perform the beta

basis function over the incoming vector that appears at the

input of each BBFNN neuron. The output layer yields a

vector  1 2
, ...,,

T

m
y y y y for m outputs by linear

combination of the outputs of the hidden nodes to produce

the final output.

Designing Beta Basis Function Neural Network for Optimization

Using Artificial Bee Colony (ABC)

Habib Dhahri, Student Member, IEEE, Adel. M. Alimi, Senior Member, IEEE,

Ajith Abraham, Senior Member

T

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IJCNN

2923

mailto:habib.dhahri@ieee.org
mailto:adel.alimi@ieee.org

Figure 2 presents the structure of a single output of BBF

network; the network output can be obtained by

1

() (,),1 (1), , ,
n

i

i if x w B x i nc p qy 


   

Besides the centre c, the beta basis function may also

present a width parameter σ, which can be seen as a scale

factor for the distance (x-c) and the parameter forms p and

q. The BBF network can be regarded as feed-forward

neural network with a single layer of hidden units, whose

responses are the outputs of the beta basis functions. The

Fig.1 shows the effect of parameters forms to the Beta

function .The latter (,), , ,i i i i iB x c p q , i =1,…,n, is

defined by:

III.

 

     

 0 1

1 1

,

0 (2)

p q

x

p q x c p q c x

p q

if x x x

else



 

   
 

 

   
   
   






Where p > 0, q > 0, x0, x1 are the real parameters, such as

x0 < x1 and

1 0px qx

p q
c





 (3)

 In the multi-dimensional case, the beta function is

defined by

1

(, , ,)() (, , ,)()
i d

i

i i i i ic p q x c p q x   




 (4)

Where d is the dimension of the Beta kernel.

The BBF neural network is usually trained to map a vector
n

kx  in to vector
no

ky  where the pairs

  1,k kx y k M  from the training set. If this

mapping is viewed as a function in the input space
n ,

learning can be seen as function approximation problem.

According to this point of view, learning is equivalent to

finding the surface in a multidimensional space that

provides the best fit to the training data. Generalization is

therefore synonymous with interpolation between the data

points along the constraint surface generated by the fitting

procedure as the optimum approximation to this mapping.

Alimi [7] investigated the use of the beta basis function in

the design of neural network as activation functions in

artificial neural networks. In [8], the authors proved that

BBF networks with one hidden layer are capable of

universal approximation. Nevertheless, the BBF networks

are capable of approximating arbitrarily well any function;

also have the best approximation property.

The performance of the BBF neural network depends to

the number of units of beta basis functions, their shapes,

the parameters forms, and the method used to determine

the associative weight matrix. Haykin [25] classified the

existing learning strategies for neural network as

follows:1) learning with a fixed number of units and

centers selected randomly from the training data; 2)

supervised learning for the selection of the centers of the

network; and 3) unsupervised learning for the selection of

the fixed number of units. In this paper, we used the

second strategy.

One of the main problems related to the development of

neural network based system is the application of suitable

learning algorithm to adjust the network parameters. The

BBF network presents the following adjustable

parameters: the position of BBFs centers
i

c ,the widths

i
 of the BBFs, the form parameters of the BBFs

i
p and

i
q and the output weights

i
w .

There are a number of proposals on how to define these

parameters in the literature. One first idea is to fix the

number of nodes and use a gradient descent method to

adjust the parameters [26], in a manner very similar to the

error back-propagation algorithm, often used with MLPs.

Nevertheless, training the BBF network in such a way

seems somewhat wasteful. There are several interesting

approaches that exploit this potential. Although slightly

different, all of them share the same idea: the definition of

the hidden layer is considered as the major task, since the

output weights can be computed according to linear

optimization techniques [26]. In [27] the authors used the

constructive method that allows BBF neural network to

grow by inserting new units in the feature space where the

mapping needs more details. In [5,6,17], the major task

considered in these works is to optimize the beta

parameters with a fixed number of nodes. In the proposed

work, we use the second strategy of Haykin.

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

 1
 q

 =
 1

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

 0
.2

 q
 =

 0
.2

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

 5
0
 q

 =
 5

0

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

 .
0
1
 q

 =
 .

0
1

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

1
 q

 =
 1

0

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

 1
0
 q

 =
2

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

 .
0
1
 q

 =
 2

-1 -0.5 0 0.5 1
0

0.5

1

p
 =

 5
 q

 =
 .

0
1

Fig.1. the Beta plot in one dimension

2924

III. ARTIFICIAL BEE COLONY ALGORITHM

 ABC is a swarm intelligent optimization algorithm based

on the metaphor foraging behavior of honey bee swarm,

proposed by Karaboga in 2005 [29]. A Bee Colony can be

considered as swarm whose individual social agents are

bees. The exchange of information among bees leads to

the formation of tuned collective knowledge. Virtually the

bee colony consists of a single “queen bee,” a few hundred

drones (males), and tens of thousands of workers (non-

reproductive females).

In the ABC algorithm, each food source is a possible

solution for the problem under consideration and the

nectar amount of a food source represents the quality of

the solution represented by the fitness value. The number

of food sources is same as the number of employed bees

and there is exactly one employed bee for every food

source. In the ABC model, the colony consists of three

groups of bees: employed bees, onlookers and scouts. It is

assumed that there is only one artificial employed bee for

each food source. In other words, the number of employed

bees in the colony is equal to the number of food sources

around the hive. Employed bees go to their food source

and come back to hive and dance on this area. The

employed bee whose food source has been abandoned

becomes a scout and starts to search for finding a new

food source. Onlookers watch the dances of employed

bees and choose food sources depending on dances.

The number of the employed bees is equal to the number

of solutions in the population.

The general scheme of the ABC algorithm is as follows:

--

Initialize Population

 repeat

Place the employed bees on their food sources

 Place the onlooker bees on the food sources

depending on their nectar amounts

Send the scouts to the search area for discovering

new food sources

Memorize the best food source found so far

until requirements are met

A. Population initialization

As with all swarm intelligent techniques, ABC works with

a population of solutions, not with a single solution for the

optimization problem. In order to establish a starting point

for optimum seeking, all employed bees are associated

with the food. A randomly distributed initial population

(food source positions) is generated. Often there is no

more available knowledge about the location of a global

optimum than the boundaries of the problem variables. In

this case, a natural way to initialize the population) P

(initial population) is to seed it with random values within

the given the lower and upper bound:

(5)(0,1) ()
mi i i i

x l rand u l   

where li and ui are the lower and upper bound of the

parameter xmi , respectively.

B. Initialization of Bee Phase (Employed Bee)

Each employed bee search a food source vm having more

nectar in the neighborhood of its current food source and

evaluates its nectar amount (fitness). The employed bee

saved the best food xi in the neighborhood of its present

position by using:

(6)()
mi mi mi kimiv x x x   

Where xk is a randomly selected food source, i is a

randomly chosen parameter index and ϕmi is a random

number within the range [-a,a] . After producing the new

food source υm , its fitness is calculated and a greedy

selection is applied between υm and xm

C. Onlooker Bee Phase

Onlooker bee chooses a food source depending on the

probability values calculated using the fitness values

provided by employed bees. For this purpose, a fitness

based selection technique can be used, such as the roulette

wheel selection method [30]

The probability value pm with which xm is chosen by an

onlooker bee can be calculated by using the expression

given in the following equation

1

(7)m
m Fs

k

k

fit
p

fit






Where fitm is the nectar amount of the of the m
th

 food

source. The fitness value of the solution, fitm(xm) , might

be calculated for minimization problems using the

following formula:

1
(8)

1 ()
m

m

fit
f x




After a food source xm for an onlooker bee is

probabilistically chosen, a neighborhood source υm is

determined by using equation 6, and its fitness value is

computed. As in the employed bees phase, a greedy

selection is applied between υm and xm. Hence, more

onlookers are recruited to richer sources and positive

feedback behavior appears.

Fig. 2. The beta architecture

2925

D. Scout Bee Phase

The unemployed bees that choose their food sources

randomly are called scouts. Employed bees whose

solutions cannot be improved through a predetermined

number of trials, “limit” or “abandonment criteria” herein,

become scouts and their solutions are abandoned. For

instance, if solution xm has been abandoned, the new

solution discovered by the scout who was the employed

bee of xm can be defined by equation 5. The pseudo code

of ABC algorithm is:

1) Initialize the population of solution xij

2) Evaluate the population

3) While number of cycle is not reached do

4) Produce a new solution (food sources positions) yij

in the neighborhood of xij using equ.6 and evaluate

them.

5) Apply the greedy selection and store the best values

between xij and vij

6) Calculate the probability values pi for different

solution xi by equ .7

7) Based on the probability pi, new solutions vi for the

onlookers are produced from the xi

8) Apply the greedy selection and store the best values

between xij and vij

9) Determine the abandoned solution (position or

source) for the scout if exit and replace it with a new

randomly produced solution xi by equ.5

10) Memorize the best food source solution achieved

si

11) Cycle =cycle+1

12) End of while

E. Encoding scheme of BBFNN networks

The ABC is used to optimize the neural parameters of

the BBFNN. This approach handles the task of updating

the population for neural network- neuron optimization.

Each individual of the population defines a beta basis

function neural network. The ABC algorithm is used to

train BBFNN by adjusting the neural parameters with

individuals with the same size. After a predefined number

of generations, ABC returns the best individuals that

represent the optimal configuration of BBFNN.

Once applying the ABC algorithm to design the BBFNN

network, the main key is to encode the BBF neural

network into the chromosome with an efficient approach.

Here, we adopt the real coded ABC and each sequence of

neural parameters (Figure 3) represents one node. Each

chromosome represents a candidate BBFNN neural

network. Since the weights parameters are computed by

the pseudo-inverse technique, therefore it is only necessary

to encode the four parameters, i.e., centers ci , widths σi,

and form parameters pi and qi which are necessary to

represent the Beta form of BBF .

c11 σ11 p11 q11 …. c1m σ1m p1m q1m

…. …. …. …. …. …. …. …. ….

cn1 σn1 pn1 qn1 …. cnm σnm pnm qnm

Fig. 3. the encoding scheme

IV. COMPUTATIONAL EXPERIMENTS

The developed ABC_BBFNN model is applied to three

benchmark problem in order to compare is performance

with existing technique. These problems are the Box–

Jenkins and sunspot number time series.

A. Prediction of Box-Jenkins Time series

In this section, the Beta basis function neural network is

applied to the gas furnace data prediction problem [31].

The data set was recorded from combustion process of a

methane–air mixture. It is well known and frequently used

as a benchmark example for testing identification and

prediction algorithms. The data set consists of 296 pairs of

input–output measurements. The input of this process is

the gas flow rate u(t) and the output y(t) is the CO2

concentration in outlet gas. in order to make a meaningful

comparison with the others work s, the inputs of the

prediction model are selected as u(t-4) and y(t-1); and the

output is y(t): the proposed ABC learning algorithm is

employed to train the BBFNN with the first 200 input -

output. The remaining 92 points are used as a test set for

testing the performance. In order to remove the effects of

the initial values of free parameters on the final results, 20

runs were performed with randomly set initial parameters

for 1000 epochs.

The objective function used is the root mean square error

(RMSE).Table 1 shows the comparison of test results of

different models for Box–Jenkins data prediction problem.

The comparison has been made to show the actual time-

series, the output of the best ABC-BBFNN and the

prediction error and the number of neurons. It is seen from

the training performances that ABC-BBFNN model with 3

neurons is among the best models. The ABC-BBFNN is

powerful for the Box-Jenkins process in training and

testing. The proposed algorithm is trained for 1000 epochs

(Figure 4). Figure 5 shows the target time series with the

output of ABC-BBFNN and Figure 6 depicts the

prediction of the time series.

0 100 200 300 400 500 600 700 800 900 1000
10

-3

10
-2

10
-1

10
0

1000 Epochs

R
M

S
E

Fig.4. RMSE training of Box-Jenkins

2926

0 20 40 60 80 100 120 140 160 180 200
-4

-2

0

2

4

Time step

C
O

2
 c

o
n
c
e
n
tr

a
ti
o
n

200 210 220 230 240 250 260 270 280 290
-1

0

1

2

3

Time step

C
O

2
 c

o
n
c
e
n
tr

a
ti
o
n

Target

Training

Target

Testing

Fg.5. ABC-BBFNN result of Box-Jenkins

0 20 40 60 80 100 120 140 160 180 200

-4

-2

0

2

4

Time step

C
O

2
 c

o
n
c
e
n
tr

a
ti
o
n

200 210 220 230 240 250 260 270 280 290
-1

0

1

2

3

Time step

C
O

2
 c

o
n
c
e
n
tr

a
ti
o
n

Target

Training

Target

Testing

Fig.6. Test of ABC-BBFNN for Box-Jenkins

 Table 1: Comparison of different models of Box-

Jenkins Time Series

Model RMSE

Training

RMSE

testing

Tong’s model [32] - 0.689

Pedrycz’s model [33] - 0.566

Xu’s model [34] - 0.573

FuNN model [35] - 0.0226

HyFis model [36] - 0.0205

Neural tree model [37] 0.0258 0.0265

WNN+ gradient [31] 0.08831 0.084

WNN+ hybrid [31] 0.08485 0.081

LLWNN+ gradient [31] 0.01581 0.01643

LLWNN+ hybrid [31] 0.01095 0.01378

Recurrent ANFIS[31] 0.006 0.019

TNFIS [40] 0.0245 0.0230

FWNN-S (2 MFs) [39] 0.01884 0.03085

FWNN-S (3 MFs) [39] 0.01880 0.02778

FWNN-R (2 MFs) [39] 0.01992 0.03171

FWNN-R (3 MFs) [39] 0.1881 0.02794

FWNN-M (2 MFs) [39] 0.0190 0.02963

FWNN-M (3 MFs) [39] 0.01963 0.02324

Our approach 0.0044 0.0049

B. Prediction of sunspot number time series

The series studied here represents the annual average

number of sunspots. These numbers show the yearly

average relative number of sunspot observed [41,44,,43].

The data points between 1700 and 1900 are used for the

training the BBFNN and 1901 -1990 for the test set. The

y(t-4),y(t-3), y(t-2) and y(t-2) are used as inputs to the

ABC-BBFNN in order to predict the output y(t). The

normalized mean square error NMSE is used to compare

the propose algorithm with the other approaches.

Table 2 illustrates the comparison of the proposed

algorithm with other models according to the training and

testing error. In Figure 7, the actual output of the time

series. The prediction values are illustrated in Figure 8 and

Figure 9 gives the training error. As evident from Table 2,

ABC-BBFNN shows again the efficiencies for the sunspot

number time series.

1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900
-2

0

2

4

Year

S
u
n
s
p
o
t

n
u
m

b
e
r

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
-2

0

2

4

6

Target

Training

Fig.7 ABC-BBFNN result of Sunspot

1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900
-2

0

2

4

Year
S

u
n
s
p
o
t

n
u
m

b
e
r

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
-2

0

2

4

6

Year

S
u
n
s
p
o
t

n
u
m

b
e
r

Target

Testing

Fig.8. Test of ABC-BBFNN for Box-Jenkins

0 100 200 300 400 500 600 700 800 900 1000
10

-3

10
-2

10
-1

10
0

1000 Epochs

R
M

S
E

Fig.9. RMSE training of sunspot

Table 2. Comparison of different models of Sunspot Time

Series prediction

Model RMSE

Training

RMSE

testing

1

RMSE

testing

2

Transversal Net [41] 0.0987 0.0971 0.3724

Recurrent net [41] 0.1006 0.0972 0.4361

RFNN [42] - 0.074 0.21

ANFIS [43] 0.0550 0.1915 0.4068

FENN [44] - - 0.18

FWNN-S [39] 0.0895 0.1093 0.1510

FWNN-R [44] 0.0796 0.1099 0.2549

FWNN-M [44] 0.0828 0.0973 0.1988

Our approach 0.0012 0.0018 0.0044

2927

C. Lorenz chaotic time series prediction

The Lorenz system is an idealized model of fluid motion

between a hot surface and a cool surface. It is described by

the following nonlinear ordinary differential equations

(),

, (9)

,

x y x

y y xz Rx

z xy bz

 

   

 







The time series used in this experiment is the x-component

in the Lorenz equations. The data were generated by

solving the system of differential equations, that describe

the Lorenz attractor, with the initial conditions of 10  ,

50r  and 8/ 3b  . The data were again normalized to

take values from zero to one, before they were used as

inputs to the polynomial neural networks.

The objective is to make one-step a head prediction. The

prediction is based on four past values

((1), (2), (3), (4))x t x t x t x t    and thus the output

pattern is () ((1), (2), (3), (4))x t f x t x t x t x t     .

 Figure 10 presents the comparison between the real time

series and that predicted by the algorithm, using 4 input

variables, in order to predict the value of the time series (1

step), using 4 neurons in the hidden layer. The root means

square error, for this simulation was 0.076. It is important

to note that other approaches appeared in the bibliography,

for example, Xiang et al. [45] obtained an RMSE of 0.290.

Figure.11 depicts the results of predicting the Lorenz time

series.

.

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

time step

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

time step

Target
Training

Target
Testing

Fig.10 ABC-BBFNN result of Lorentz

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

time step

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

time step

Target
Training

Target
Testing

Fig.11. Test of ABC-BBFNN for Lorentz

V. CONCLUSIONS

In this paper, the beta basis function neural network is

developed for the prediction of benchmark problems. The

impressive generalization capability of the presented

BBFNN model is derived primarily from the use of the

artificial of bee colony algorithm (ABC) and the fast

convergence with high precision. As evident from the

experiments, the ABC-BBFNN gives the smallest training

error and the testing error.

The results obtained through the sunspot, Box Jenkins

also reveal that the performance of the ABC is better than

or similar to those of other population-based algorithms

with the advantage of employing fewer control parameters.

Furthermore, in ABC, no user intervention is required. Our

future work is targeted to improve the ABC to further

enhance the optimal structure of BBFNN.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial

support of this work by grants from the General Direction

of Scientific Research and Technological Renovation

(DGRSRT), Tunisia, under the ARUB program

01/UR/11/02. Ajith Abraham acknowledges the support

from the framework of the IT4Innovations Centre of

Excellence project, reg. no. CZ.1.05/1.1.00/02.0070

supported by Operational Programme 'Research and

Development for Innovations' funded by Structural Funds

of the European Union and state budget of the Czech

Republic.

REFERENCES

[1] B. Subudhi and D. Jena, A differential evolution based neural

network approach to nonlinear system identification, Applied Soft

Computing 11(1) (2011) 861-871.

[2] B. Subudhi ,D. Jena, Nonlinear System Identification using

Opposition Based Learning Differential Evolution and Neural

Network Techniques, Applied Soft Computing 11(1) (2011) 861-

871.

[3] A . M. Islam, S. Ghosh, S. Das, A. Abraham, S. Roy, A Modified

Discrete Differential Evolution based TDMA scheduling scheme

for many to one communications in wireless sensor networks,

Proceedings of IEEE Congress on Evolutionary Computation,

2011,pp. 1950-1957.

[4] H. Bourlard , N. Morgan, Connectionist Speech Recognition: A

Hybrid Approach, The Kluwer International Series in Engineering

and Computer Science; v. 247, Boston: Kluwer Academic

Publishers, 1994.

[5] H. Dhahri, A.M. Alimi, F. Karray: Opposition-based particle swarm

optimization for the design of beta basis function neural network.
Proceedings of the International Joint Conference on Neural

Networks (IJCNN), Barcelona, Spain, 2010, pp.18-23.

[6] H. Dhahri, A.M. Alimi, F. Karray: Opposition-based differential
evolution for beta basis function neural network. Proceedings of

IEEE Congress on Evolutionary Computation , Barcelona, Spain,

2010, pp.1-8.

[7] A.M. Alimi, The Beta System: Toward a Change in Our Use of

Neuro-Fuzzy Systems. International Journal of Management,

Invited Paper, pp.15-19, 2000

[8] M.A Alimi., R. Hassine, and M. Selmi ,” Beta Fuzzy Logic
Systems: Approximation Properties in the SISO Case” ,

International Journal of Applied Mathematics & Computer Science,

Special Issue on “Neuro-Fuzzy and Soft Computing” edited by D.
Rutkowska and L.A. Zadeh, vol. 10, no. 4, (2000),pp. 857-875.

[9] C. Harpham , W. Dawson , R. Brown, A review of genetic

algorithms applied to training radial basis function networks,

Neural Computing and Applications, v.13 n.3, p.193-201,

September 2004

[10] S.J. Ovaska, A. Kamiya, Y.Q. Chen, Fusion of soft computing and

hard computing: computational structures and characteristic

features. IEEE Trans. Syst. Man Cybernet. 36 (3). 439-448.

[11] P.M. Pawar, and R. Ganguli, Matrix crack detection in thin-walled

composite beam using genetic fuzzy system. J. Intell. Mater. Syst.

Struct. 16 (5). 395-409.

[12] X. Yao and Y. Liu (1998), Towards designing artificial neural

networks by evolution, Applied Mathematics and Computation,

91(1): pp. 83-90.

2928

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236646%232011%23999889998%232346743%23FLA%23&_cdi=6646&_pubType=J&view=c&_auth=y&_acct=C000053505&_version=1&_urlVersion=0&_userid=1062533&md5=9e2bb081fab4c9341a132dea722955c7
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Islam:Sk_Minhazul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Das:Swagatam.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Roy:Subhrajit.html

[13] X. Yao and Y. Liu (1997), A new evolutionary system for

evolving artificial neural networks, IEEE Transactions on

Neural Networks, 8(3), pp. t694-713.

[14] X. Yao (1995), Designing Artificial Neural Networks Using

Co-Evolution, Proceedings of IEEE Singapore International

Conference on Intelligent Control and Instrumentation, pp.149-154.

[15] F. Mascioli and G. Martinelli (1995), a constructive algorithm for

binary neural networks: The oil Spot Algorithm, IEEE Transaction

on Neural Networks, 6(3), pp 794-797.

[16] A. Abraham, Optimization of Evolutionary Neural Networks Using

Hybrid Learning Algorithms, IEEE International Joint Conference

on Neural Networks (IJCNN02), 2002 IEEE World Congress on

Computational Intelligence, Hawaii, ISBN 0780372786, IEEE

Press, Volume 3, pp. 2797-2802, 2002.

[17] H. Dhahri, A.M. Alimi, F. Karray, The modified particle swarm

optimization for the design of the Beta Basis Function neural
networks, Proc. Congress on Evolutionary Computation, Hong

Kong, China, 2008, pp. 3874-3880.

[18] C.F. Juang, C.M. Hsiao, and C.H. Hsu, Hierarchical Cluster-Based
Multispecies Particle-Swarm optimization for Fuzzy-System

Optimization. IEEE Transactions on Fuzzy Systems, 18(1) 2010

,14-26.
[19] X. Xu, Y. Li, Comparison between Particle Swarm Optimization,

Differential Evolution and Multi-Parents Crossover, Proceedings of
international conference on computational intelligence and security

, 2007,pp. 124-127.

[20] R. storn, Differential evolution –a simple and efficient adaptive
scheme for global optimization over continuous space. J. global

optim. 4 (1995) 341-359.

[21] H. Dhahri, A. M. Alimi, “Automatic Selection for the Beta Basis
Function Neural Networks”, Nature Inspired Cooperative

Strategies for Optimization (NICSO), pp. 461-474, 2007.

[22] S. Das, A. Abraham, and A. Konar, “Adaptive clustering using

improved differential evolution algorithm,” IEEE Transactions on

Systems, Man and Cybernetics – Part A, IEEE Press, USA, vol. 38,

issue 1, pp. 218-237, 2008.

[23] M. Pant , R. Thangaraj , C. Grosan , A. Abraham, Hybrid

Differential Evolution – Particle Swarm Optimization Algorithm

for Solving Global Optimization Problems 1, Proceedings of third

International Conference on Digital Information Management,

2008, pp. 18-24

[24] D. Karaboga and B. Akay, A comparative study of Artificial Bee

Colony algorithm, Applied Mathematics and Computation,

214(1),2009,108-132;
[25] H. Simon, Neural networks: a comprehensive foundation, New

Jersey, Printice Hall, 1994.

[26] H. Dhahri, and A.M. Alimi, Hierarchical Learning Algorithm for
the Beta Basis Function Neural Network, Proc. Third International

Conference on Systems, Signals & Devices, Tunisia, 2005.
[27] M. Njah, A.M. Alimi, M. Chtourou and R. Tourki , Algorithm of

Maximal Descent AMD for training Radial Basis Function Neural

Networks , Proc. IEEE International Conference on Systems, Man
and Cybernetics: SMC'02, Hammamet, Tunisia, October 2002.

[28] H. Dhahri, and M.A. Alimi, The Modified Differential Evolution

and the RBF (MDE-RBF) Neural Network for Time Series
Prediction”, Proc. International Joint Conference on Neural

Networks: IJCNN'06, Vancouver, July, pp 5245-5250, 2006.

[29] D, Karaboga, (2005). An idea based on honey bee swarm for

numerical optimization. Technical Report TR06, Erciyes

University, Engineering Faculty, Computer Engineering

Department, 2005.

[30] D. E. Goldberg, (1989). Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley.

[31] Y. Chen, B. Yang, J. Dong, Time-series prediction using a local
linear wavelet neural network, Neurocomputing 69 (2006) 449–465

[32] R.M. Tong, The evaluation of fuzzy models derived from

experimental data, Fuzzy Sets and Systems, 4 (1980) 1-12.
[33] W. Pedrycz, An identification algorithm in fuzzy relational system.

Fuzzy Sets and Systems, 13 (1984), pp. 153–167.

[34] C.W. Xu and Y.Z. Lu, Fuzzy model. Identification and self-learning
for dynamic systems, IEEE Trans. Syst. Man, Cyber, (17) 4,683-

689, 1987.

[35] N.K. Kasabov, J. Kim, M.J. Watts, and A.R. Gray, "FuNN/2 - A
Fuzzy Neural Network Architecture for Adaptive Learning and

Knowledge Acquisition", presented at Inf. Sci., 1997, pp.155-175.

[36] Kim, J., Kasabov, N.K.: HyFIS: adaptive neuro-fuzzy inference
systems and their application to nonlinear dynamical systems.

Neural Networks(1999) 1301-1319

[37] Y. Chen, B. Yang, J. Dong, Nonlinear System Modeling via
Optimal Design of Neural Trees, Int. J. of Neural Systems, vol.8,

no.2,pp.125-137, 2004.

[38] H. Tamura, K. Tanno, H. Tanaka, C. Vairappan, Z. Tang, Recurrent
Type ANFIS using Local Search Technique for Time Series

Prediction, in proc. IEEE Asia Pacific Conf. Circuits Sys., (2008),

pp.380-383.
[39] S. Yilmaz, Y. Oysal. Fuzzy wavelet neural network models for

prediction and identification of dynamical systems. IEEE

Transactions on Neural Networks, 2010: 1599~1609
[40] E. Y., Cheu, C. Quek, , & Ng, S. K. (2008). TNFIS: Tree based

neural fuzzy inference system. In IEEE international joint

conference on neuronal networks, IJCNN, 2008, pp.398-405
[41] J.R. McDonnell, D. Waagen., Evolving recurrent perceptrons for

time-series modeling, IEEE Trans Neural Netw. 1994;5(1):24-38.

[42] R. A. Aliev, B. G. Guirimov, R. R. Aliev, Evolutionary algorithm-

based learning of fuzzy neural networks. Part 2: Recurrent fuzzy

neural networks, Fuzzy Sets and Systems, 160 (17), September,

2009
[43] J. S. R. Jang, ANFIS: Adaptive network based fuzzy inference

system, IEEE Transactions on Systems, Man and. Cybernetics, vol.
23, no. 3, pp. 665-685, 1993.

[44] A Hussain, A new neural network structure for temporal signal

processing , Proc Int Conf on Acoustics Speech and Signal
Processing (1997) ,pp. 3341-3344

[45] C. Xiang, W. Zhou, Z. Yuan, Y. Chen and Xi. Xiong, A new

parameters joint optimization method of chaotic time series
prediction, International Journal of the Physical Sciences Vol.

6(10), pp. 2565-2571, 18 May, 2011

[46] A. Abraham, Meta-Learning Evolutionary Artificial Neural

Networks, Neurocomputing Journal, Elsevier Science, Netherlands,

Vol. 56c, pp. 1-38, 2004.

[47] Y. Chen, B. Yang, J. Dong and A. Abraham, Time Series

Forecasting Using Flexible Neural Tree Model, Information

Sciences, Elsevier Science, Vol. 174, Issues 3/4, pp. 219-235, 2005.

[48] Y. Chen and A. Abraham, Tree-Structure based Hybrid

Computational Intelligence: Theoretical Foundations and

Applications, Intelligent Systems Reference Library Series,

Springer Verlag, Germany, ISBN: 978-3-642-04738-1, 2009.

2929

http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm#Karaboga05
http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm#Karaboga05
http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm#Karaboga05
http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm#Karaboga05
http://arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Sevcan%20Yilmaz
http://arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Yusuf%20Oysal
http://arnetminer.org/viewpub.do?pid=2982218
http://arnetminer.org/viewpub.do?pid=2982218
http://arnetminer.org/viewpub.do?pid=2982218
http://www.ncbi.nlm.nih.gov/pubmed/18267777
http://dl.acm.org/author_page.cfm?id=81350588474&coll=DL&dl=ACM&trk=0&cfid=78696642&cftoken=62481028
http://dl.acm.org/author_page.cfm?id=81361601547&coll=DL&dl=ACM&trk=0&cfid=78696642&cftoken=62481028
http://dl.acm.org/author_page.cfm?id=81100112362&coll=DL&dl=ACM&trk=0&cfid=78696642&cftoken=62481028
http://www.mendeley.com/research/new-neural-network-structure-temporal-signal-processing-4/
http://www.mendeley.com/research/new-neural-network-structure-temporal-signal-processing-4/
http://www.mendeley.com/research/new-neural-network-structure-temporal-signal-processing-4/

