
 
 

  

Abstract— Quasirandom or low discrepancy sequences, such 
as the Van der Corput, Sobol, Faure, Halton (named after their 
inventors) etc. are less random than a pseudorandom number 
sequences, but are more useful for computational methods 
which depend on the generation of random numbers. Some of 
these tasks involve approximation of integrals in higher 
dimensions, simulation and global optimization. Sobol, Faure 
and Halton sequences have already been used [7, 8, 9, 10] for 
initializing the swarm in a PSO. This paper investigates the 
effect of initiating the swarm with another classical low 
discrepancy sequence called Vander Corput sequence for 
solving global optimization problems in large dimension search 
spaces. The proposed algorithm called VC-PSO and another 
PSO using Sobol sequence (SO-PSO) are tested on standard 
benchmark problems and the results are compared with the 
Basic Particle Swarm Optimization (BPSO) which follows the 
uniform distribution for initializing the swarm. The simulation 
results show that a significant improvement can be made in the 
performance of BPSO, by simply changing the distribution of 
random numbers to quasi random sequence as the proposed 
VC-PSO and SO-PSO algorithms outperform the BPSO 
algorithm by noticeable percentage, particularly for problems 
with large search space dimensions.  

I. INTRODUCTION 

Particle swarm optimization technique is one of the most 

promising tools for solving global optimization problems. It 
is a population based stochastic search technique first 
suggested by Kennedy and Eberhart in 1995 [1]. Because of 
its simplicity and robustness, it immediately became a 
popular technique for solving complex optimization 
problems arising in various diversified fields of science and 
engineering.  

PSO (and other search techniques which depend on the 
generation of random numbers) works very well for 
problems having a small search area (i.e. a search area 
having low dimension), but as we go on increasing the 
dimension of search space the performance deteriorates and 
many times converge prematurely giving a suboptimal result 
[2]. This problem becomes more persistent in case of 
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multimodal functions having several local and global 
optima. One of the reasons for the poor performance of a 
PSO may be attributed to the dispersion of initial population 
points in the search space i.e. to say, if the swarm population 
does not cover the search area efficiently, it may not be able 
to locate the potent solution points, thereby missing the 
global optimum [3]. This difficulty may be minimized to a 
great extent by selecting a well-organized distribution of 
random numbers.  

The most common practice of generating random numbers 
is the one using an inbuilt subroutine (available in most of 
the programming languages), which uses a uniform 
probability distribution to generate random numbers. This 
method is not very proficient as it has been shown that 
uniform pseudorandom number sequences have discrepancy 
of order (log (log N))1/2 and thus do not achieve the lowest 
possible discrepancy. Subsequently, researchers have 
proposed an alternative way of generating ‘quasirandom’ 
numbers through the use of low discrepancy sequences. 
Their discrepancies have been shown to be optimal, of order   
(log N)s/N [4], [5]. Quasirandom sequences, on the other 
hand are more useful for global optimization, because of the 
variation of random numbers that are produced in each 
iteration. 

In case of population based search algorithms like 
Evolutionary Algorithms, Genetic algorithms, Particle 
Swarm Optimization etc., not much research has been done 
on the use of quasi random sequences. Some previous 
instances where low discrepancy sequences have been used 
to improve the performance of optimization algorithms 
include [6, 7, 8, 9, 10]. Kimura and Matsumura [6] have 
used Halton sequence for initializing the Genetic Algorithms 
(GA) population and have shown that a real coded GA 
performs much better when initialized with a quasi random 
sequence in comparison to a GA which initialized with a 
population having uniform probability distribution. Instances 
where quasi random sequences have been used for 
initializing the swarm in PSO can be found in [7, 8, 9, 10]. 
In [8, 9, 10] authors have made use of Sobol and Faure 
sequences. Similarly, Nguyen et al. [7] have shown a 
detailed comparison of Halton Faure and Sobol sequences 
for initializing the swarm.  In the previous studies, it has 
already been shown that the performance of Sobol sequence 
dominates the performance of Halton and Faure sequences. 
However to the best of our knowledge, no results are 
available on the performance of Van der Corput sequence 
which is a well known sequence and forms the basis of many 
other sequences. 
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 Many of the relevant low discrepancy sequences are 
linked to the Van der Corput sequence introduced initially 
for dimension s = 1 and base b = 2 [11]. The Van der Corput 
discovery inspired other quasi random sequences like Halton 
[12], Faure, Sobol [13] [14], etc. However, it has been 
reported that Halton and Faure sequences do not work too 
well when the search space has large dimensions. Keeping 
this fact in mind we decided to scrutinize the performance of 
PSO using Van der Corput sequence along with Sobol 
sequence (which is said be superior than other low 
discrepancy sequences according to the previous studies) for 
swarm initialization and tested them for solving global 
optimization problems in large dimension search spaces. 

The remaining paper is organized as follows: in Section 
II, we have briefly described the BPSO algorithm. Section 
III describes the Vander Corput and Sobol sequences along 
with the proposed VC-PSO and SO-PSO algorithm. The 
experimental setup, parameter settings and benchmark 
problems are reported in Section IV. The experimental 
results are analyzed in Section V, finally the paper concludes 
with Section VI.  

II. BASIC PARTICLE SWARM OPTIMIZATION 
Particle Swarm Optimization (PSO) is a relatively newer 

addition to a class of population based search technique for 
solving numerical optimization problems. Its mechanism is 
inspired from the complex social behavior shown by the 
natural species like flock of birds, school of fish and even 
crowd of human beings. The particles or members of the 
swarm fly through a multidimensional search space looking 
for a potential solution. Each particle adjusts its position in 
the search space from time to time as per its own experience 
and also as per the position of its neighbors (or colleagues). 

For a D-dimensional search space the position of the ith 
particle is represented as Xi = (xi1, xi2,.., xiD). Each particle 
maintains a memory of its previous best position Pi = (pi1, 
pi2… piD) and a velocity Vi = (vi1, vi2, …,viD) along each 
dimension. At each iteration, the P vector of the particle with 
best fitness in the local neighborhood, designated g, and the 
P vector of the current particle are combined to adjust the 
velocity along each dimension and a new position of the 
particle is determined using that velocity. The two basic 
equations which govern the working of PSO are that of 
velocity vector and position vector are given by: 
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The first part of equation (1) represents the inertia of the 
previous velocity, the second part is the cognition part and it 
tells us about the personal thinking of the particle, the third 
part represents the cooperation among particles and is 
therefore named as the social component [15]. Acceleration 
constants c1, c2 [16] and inertia weight ω [17] are the 
predefined by the user and r1, r2 are the uniformly generated 
random numbers in the range of [0, 1]. The computational 
steps of BPSO algorithm are shown in Figure 1. 

 
Fig. 1 Flow of BPSO algorithm 

III. PROPOSED ALGORITHMS 
As stated above, the purpose of this paper is to test the 
integrity of quasi random (or low discrepancy) sequences 
(for the present study the chosen sequences are Van der 
Corput and Sobol) for generating the initial population of 
swarm in a PSO algorithm. Mathematically, the discrepancy 
of a sequence is the measure of its uniformity which may be 
defined as follows: 
For a given set of points x1, x2, …,xN ∈ IS and a subset          
G ⊂ IS, define a counting function  
SN(G) as the number of points xi ∈ G 
For each x = (x1, x2, ….xS) ∈ IS, 
Let Gx be the rectangular S dimensional region. 
Gx = [0,x1) x [0,x2) x…x[0,xS) 
With volume x1x2…xN. Then the discrepancy of points is 
given by D*N(x1, x2, x3….xN) = Sup SN(Gx) – Nx1x2…xS, 
x∈ IS. 
The discrepancy is therefore computed by comparing the 
actual number of sample points in a given volume of a multi-
dimensional space with the number of sample points that 
should be there assuming a uniform distribution. Figures 2 
and 3 show a pseudo random sequence and a quasi random 
sequence. From these figures it can be seen easily that the 
distribution of points is more systematic in a quasi random 
sequence in comparison to a pseudo random sequence. 



 
 

 
Fig. 2 Sample points generated using a pseudo random 

sequence 

 
Fig. 3 Sample points generated using a quasi random 

sequence 

A. Van der Corput Sequence 

A Van der Corput sequence is a low-discrepancy sequence 
over the unit interval first published in 1935 by the Dutch 
mathematician J. G. Van der Corput. It is a digital (0, 1)-
sequence, which exists for all bases b ≥ 2. It is defined by 
the radical inverse function φb : N0→[0, 1). If n ∈ N0 has 
the b-adic expansion  
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In other words, the jth b-adic digit of n becomes the jth b-
adic digit of φb(n) behind the decimal point. The Van der 
Corput sequence in base b is then defined as (φb(n))n ≥ 0. 

The elements of the Van der Corput sequence (in any 
base) form a dense set in the unit interval: for any real 

number in [0, 1] there exists a sub sequence of the Van der 
Corput sequence that converges towards that number. They 
are also uniformly distributed over the unit interval. 

B. Sobol Sequence 
The construction of the Sobol sequence [18] uses linear 

recurrence relations over the finite field, F2, where F2 = {0, 
1}. Let the binary expansion of the non-negative integer n be 
given by 11
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)()(

22
)(

11
)( ...... j

ww
jjj

n vnvnvnX ⊕⊕⊕=  

where )( j
iv is a binary fraction called the ith direction number 

in the jth dimension. These direction numbers are generated 
by the following q-term recurrence relation: 
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We have i > q, and the bit, ia , comes from the coefficients 
of a degree-q primitive polynomial over F2.  

C. VC-PSO and SO-PSO Algorithm 
It has been shown that uniformly distributed particles may 

not always be good for empirical studies of different 
algorithms. The uniform distribution sometimes gives a 
wrong impression of the relative performance of algorithms 
as shown by Gehlhaar and Fogel [19].  

The quasi random sequences on the other hand generates a 
different set of random numbers in each iteration, thus 
providing a better diversified population of solutions and 
thereby increasing the probability of getting a better 
solution. 

Keeping this fact in mind we decided to use the Vander 
Corput sequence and Sobol sequence for generating the 
swarm. The swarm population follows equation (1) and (2) 
for updating the velocity and position of the swarm. 
However for the generation of the initial swarm Van der 
Corput Sequence and Sobol Sequences have been used for 
VC-PSO and SO-PSO respectively. 

 

IV. EXPERIMENTAL SETTINGS  
For all the algorithms, a linearly decreasing inertia weight is 
used which starts at 0.9 and ends at 0.4, with the user 
defined parameters c1= c2=2.0 and r1, r2 as uniformly 
distributed random numbers between 0 and 1. For each 
function, four different dimension sizes of 10, 20, 30 and 50 
are taken. The maximum number of generations is set as 
1000, 1500 and 2000 with population sizes of 20, 40 
corresponding to the dimensions 10, 20, 30 and 50 
respectively. Stopping criteria for all the algorithms is taken 
as the maximum number of generations. A total of 30 runs 
for each experimental setting are conducted and the average 
fitness of the best solutions throughout the run is recorded. 
We have taken two different ranges R1 and R2 for the search 
space for all the test functions.  



 
 

V. TEST FUNCTIONS AND EXPERIMENTAL RESULTS 
In order to check the compatibility of the proposed VC-

PSO and SO-PSO algorithms we took a test suite of four 
unconstrained, classical bench mark functions, given in 
Table I, that are often used for deciding the credibility of an 
optimization algorithm.  Functions f1, f2, and f4 are highly 
multimodal in nature. Moreover, we have taken two 
different ranges R1 and R2 for the search space for all the 
test functions. R1 is the original dimension of the search 
space that is generally cited in the research papers dealing 
with the comparison of optimization algorithms, but since in 
this paper we are checking the credibility of quasi random 
sequences to produce good solution points in a large 

dimension search space, we took another range R2 with 
increased dimension of the original search space to allow for 
comparison on more difficult problem instances. The results 
of BPSO algorithm corresponding to the range R1 for 
function f1, f2 and f3 are taken from [20]. The mean best 
fitness value for the functions f1 – f5 are given in Tables II – 
VI, respectively, in which P represents the swarm 
population, D represents the dimension and G represents the 
maximum number of permissible generations. Figures 4, 5, 6 
and 7 show the mean best fitness curves for the given 
functions. 

 
 

 
 

TABLE I 
NUMERICAL BENCHMARK PROBLEMS 

Function Optimum Range 1 (R1) Range 2 (R2) 
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TABLE II 

RESULT OF TEST FUNCTION 1f   

R1 R2 
P D G 

BPSO SO-PSO VC-PSO BPSO SO-PSO VC-PSO 
10 1000 5.5572 4.647559 3.880492 6.785225 5.919983 2.985324 
20 1500 22.8892 22.213901 19.615505 34.547704 15.7203 12.743894 
30 2000 47.2941 41.613066 40.793075 66.816699 26.023739 25.172492 

20 

50 3000 105.465 88.211285 81.509773 187.74240 53.38977 42.797887 
10 1000 3.5623 2.984863 3.351035 6.133424 2.935168 2.737171 
20 1500 16.3504 16.021596 15.919263 24.27542 13.026489 12.541202 
30 2000 38.5250 34.684111 31.755918 51.027076 25.474607 19.322985 

40 

50 3000 92.8400 66.018642 62.149 137.38657 45.026485 40.150249 
 

     
 
 
 
 
 
 
 
 



 
 

TABLE III  
RESULT OF TEST FUNCTION 2f     

R1 R2 
P D G 

BPSO SO-PSO VC-PSO BPSO SO-PSO VC-PSO 

10 1000 0.0919 0.001229 0.003326 0.149345 0.056995 0.004313 

20 1500 0.0313 0.000986 0.002583 0.041509 7.819e-16 8.956e-15 

30 2000 0.0182 7.651e-12 0.000986 0.01633 2.777e-11 4.787e-11 
20 

50 3000 0.0147 2.162e-09 1.849e-09 0.018478 4.849e-09 3.074e-07 

10 1000 0.0862 0.001725 0.005169 0.090361 0.008491 0.003446 

20 1500 0.0286 8.674e-20 0.003194 0.037427 1.626e-19 2.240e-16 

30 2000 0.0127 3.284e-14 3.064e-14 0.018426 4.941e-14 8.669e-14 
40 

50 3000 0.0098 5.837e-11 3.772e-11 0.008983 1.353e-10 5.837e-11 
 

TABLE IV  
RESULT OF TEST FUNCTION 3f     

R1 R2 
P D G 

BPSO SO-PSO VC-PSO BPSO SO-PSO VC-PSO 

10 1000 96.1715 4.233931 3.650252 27.931384 4.165369 4.243705 

20 1500 214.6764 16.288114 13.44568 102.43696 17.218995 11.485271 

30 2000 316.4468 33.615175 32.399337 159.80824 39.181265 45.264272 
20 

50 3000 533.648 86.268354 84.536223 210.43212 85.600516 89.927502 

10 1000 70.2139 3.908925 4.041561 27.845406 3.799519 4.064811 

20 1500 180.9671 15.856598 12.403083 56.356471 12.625576 16.373076 

30 2000 299.7061 36.66065 31.897961 148.85530 38.830241 33.646456 
40 

50 3000 482.135 83.583921 81.065624 232.98606 88.173599 73.407326 
 

TABLE V  
RESULT OF TEST FUNCTION 4f      

R1 R2 
P D G 

BPSO SO-PSO VC-PSO BPSO SO-PSO VC-PSO 

10 1000 6.965e-12 2.996e-12 3.114e-12 20.025405 3.081e-11 9.764e-12 

20 1500 3.560e-07 6.681e-08 8.572e-08 19.999566 1.946e-07 1.619e-07 

30 2000 3.618e-05 8.692e-06 2.649e-06 20.010351 1.399e-05 2.408e-05 
20 

50 3000 3.43866 5.690e-04 2.024e-03 20.025072 1.433e-03 1.497e-03 

10 1000 7.897e-13 3.495e-14 5.608e-14 16.334716 2.558e-13 7.782e-14 

20 1500 5.045e-08 2.509e-09 2.654e-09 19.999332 9.823e-09 3.452e-09 

30 2000 7.269e-06 6.693e-07 4.418e-07 20.049032 1.166e-06 3.975e-07 
40 

50 3000 1.966554 1.090e-05 1.371e-04 20.030038 9.158e-05 7.749e-05 
 
 

 
 
 
 

TABLE VI 



 
 

RESULT OF TEST FUNCTION 5f  
R1 R2 

P D G 
BPSO SO-PSO VC-PSO BPSO SO-PSO VC-PSO 

10 1000 4.831e-05 4.420e-06 2.210e-11 5.736e-05 5.046e-06 4.420e-06 

20 1500 1.501872 0.086019 0.069028 1.564932 0.099365 0.086019 

30 2000 10.918735 0.437305 0.443966 9.519843 0.420949 0.437305 
20 

50 3000 33.56714 0.802782 0.828851 33.430501 0.811536 0.802782 

10 1000 7.421e-07 5.894e-08 4.651e-15 6.235e-07 8.414e-08 5.893e-08 

20 1500 0.343671 0.020741 0.016538 0.368743 0.026471 0.020741 

30 2000 7.481037 0.280413 0.32125 7.102399 0.331953 0.280413 
40 

50 3000 29.9286 0.508336 0.706595 26.658801 0.786058 0.808336 
 
 

 
Fig. 4.  Convergence graph for function 1f  

 
Fig. 5.  Convergence graph for function 2f  



 
 

 
Fig. 6.  Convergence graph for function 4f  

 
Fig. 7.  Convergence graph for function 5f  

 
 

VI.   DISCUSSIONS AND CONCLUSION 
The present study inspects the performance of two 

common Low Discrepancy Sequences namely Van der 
Corput sequence and Sobol Sequences for swarm 
initialization in PSO, for solving global optimization 
problems. Their performance is compared with the BPSO 
algorithm on problems with varying dimensions of 10, 20, 
30 and 50. Our particular interest was to see the 
performance of these algorithms for problems having a 
large search space. Therefore for all the test problems we 
have taken different dimensions of the search space R1 
and R2 ranging from [-5.12, 5.12] to [-1000, 1000]. 

The numerical results show that although VC-PSO and 
SO-PSO gives a better performance than BPSO for all the 
test problems, their performance is much better for 
problems with large search space (functions f2 to f5). In 
the first function where the dimensions of search space is 
small [-5.12, 5.12], the percentage of improvement in the 
mean fitness value is not quite evident. However as we 
increase the dimension of the search space to [-100,100], 
the superior performance of VC-PSO and SO-PSO 

becomes more obvious. In the second function, when the 
dimension of the search space is [-600,600], the 
performance of all the algorithms is satisfactory in 
comparison o the true optimum (which is 0). But as we 
increase the dimension to [-1000, 1000], VC-PSO and 
SO-PSO performs much better than BPSO. Similarly for 
f3, f4 and f5, we can easily judge from the numerical 
results the significant superiority of VC-PSO and SO-PSO 
over BPSO for both the ranges. 

 If we compare VC-PSO and SO-PSO with each other 
we see that out of the 80 cases (40 cases for R1 and 40 
cases for R2) tested in this study VC-PSO gave a better 
performance in 24 cases (60 %) and SO-PSO gave a 
better performance in 16 cases (40%). For the larger 
search space (R2), VC-PSO gave a better mean function 
value in 25 cases (62.5%) and SO-PSO in remaining 15 
cases (37.5%).  

From this study we can conclude that quasi random 
sequences like Vander Corput and Sobol are much better 
for generating random numbers for PSO and most 
probably for all the population search algorithms. In 
future, we plan to work for problems with larger 



 
 

dimensions and also constrained optimization problems. 
Also in this study we have not used any additional 
operators like mutation etc. and it will be interesting to 
see the effect of these operators on VC-PSO and SO-PSO.  
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