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Automatic Design of Hierarchical Takagi—Sugeno
Type Fuzzy Systems Using Evolutionary Algorithms
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Abstract—This paper presents an automatic way of evolving
hierarchical Takagi-Sugeno fuzzy systems (TS-FS). The hier-
archical structure is evolved using probabilistic incremental
program evolution (PIPE) with specific instructions. The fine
tuning of the /F-THEN rule’s parameters encoded in the struc-
ture is accomplished using evolutionary programming (EP). The
proposed method interleaves both PIPE and EP optimizations.
Starting with random structures and rules’ parameters, it first
tries to improve the hierarchical structure and then as soon as
an improved structure is found, it further fine tunes the rules’
parameters. It then goes back to improve the structure and the
rules’ parameters. This loop continues until a satisfactory solution
(hierarchical TS-FS model) is found or a time limit is reached.
The proposed hierarchical TS-FS is evaluated using some well
known benchmark applications namely identification of nonlinear
systems, prediction of the Mackey—Glass chaotic time-series and
some classification problems. When compared to other neural
networks and fuzzy systems, the developed hierarchical TS-FS
exhibits competing results with high accuracy and smaller size of
hierarchical architecture.

Index Terms—Classification, evolutionary programming,
hierarchical Takagi-Sugeno fuzzy systems (TS-FS) model,
probabilistic incremental program evolution algorithm, system
identification, time-series prediction.

I. INTRODUCTION

UZZY inference systems [1], [2], [31] have been success-

fully applied to a number of scientific and engineering
problems during recent years. The advantage of solving com-
plex nonlinear problems by utilizing fuzzy logic methodologies
is that the experience or expert’s knowledge described as the
fuzzy rule base can be directly embedded into the system for
dealing with the problems. Many efforts have been made to
enhance systematic design of fuzzy logic systems [4]-[8],
[46], [51]. Some researches focus on automatically finding the
appropriate structure and parameters of fuzzy logic systems
by using genetic algorithms [5], [8], [46], evolutionary pro-
gramming [7], tabu search [10], and so on. There are many
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research works focusing on partitioning of the input space, to
determine the fuzzy rules and parameters evolved in the fuzzy
rules for a single fuzzy system [34], [35]. As it is well known,
the curse-of-dimensionality is an unsolved problem in the fields
of fuzzy and/or neurofuzzy systems [50].

Some of the problems mentioned above are partially solved
by several researchers working in the hierarchical fuzzy systems
domain [10]-[18], [33], [53], [54]. Torra [3] has summarized the
related recent researches. As a way to overcome the curse-of-di-
mensionality, it was suggested by Brown et al. [18] to arrange
several low-dimensional rule base in a hierarchical structure,
i.e., a tree, causing the number of possible rules to grow in a
linear way according to the number of inputs. A method was
proposed to determine automatically the fuzzy rules in a hierar-
chical fuzzy model [38]. Rainer [16] described a new algorithm
which derives the rules for hierarchical fuzzy associative mem-
ories that were structured as a binary tree. Wang and Wei [12],
[13], [19] proposed specific hierarchical fuzzy systems and its
universal approximation property was proved. The approxima-
tion capabilities of hierarchical fuzzy systems was further an-
alyzed by Zeng and Keane [52]. But the main problem lies in
fact that this is a specific hierarchical fuzzy system which lacks
flexibility in structure adaptation, and it is difficult to arrange
the input variables for each sub-model. Lin and Lee [20] pro-
posed a genetic algorithm based approach to optimize the hier-
archical structure and the parameters of five-inputs hierarchical
fuzzy controller for the low-speed control problem. Based on
the analysis of importance of each input variable and the cou-
pling between any two input variables, the problem of how to
distribute the input variables to different (levels of) relational
modules for incremental and aggregated hierarchical fuzzy re-
lational systems was addressed [33].

Building a hierarchical fuzzy system is a difficult task. This
is because we need to define the architecture of the system (the
modules, the input variables of each module, and the interac-
tions between modules), as well as the rules of each modules.
Two approaches could be used to tackle this problem. One ap-
proach is that an expert supplies all the required knowledge for
building the system. The other one is to use machine and/or opti-
mization techniques to construct/adapt the system. Several ma-
chine learning and optimization techniques have been applied to
aid the process of building hierarchical fuzzy systems. For ex-
ample, Shimojima et al. use genetic algorithm to determine the
hierarchical structure [38]. This is combined with backpropa-
gation and gradient descent algorithm to fine tune its parame-
ters. A structure identification method of sub-models for hierar-
chical fuzzy modeling using the multiple objective genetic al-
gorithm was proposed by Tachibana and Furuhashi [39]. Chen
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et al. [40] have proposed a hybrid method to optimize the hi-
erarchical Takagi—Sugeno (TS) fuzzy model by using ant pro-
gramming and particle swarm optimization algorithm.

From now onwards, the hierarchical structure or structure
for short means the way of arrangement of hierarchical TS
fuzzy systems and the position/selection of each input variable
in the sub-fuzzy systems. The free parameters to be optimized
including all the parameters used in the hierarchical TS fuzzy
systems including membership function parameters for each
fuzzy sets, the free parameters in the consequent parts of the
fuzzy rule base for each sub-fuzzy systems.

This paper presents a systematic design method for the hierar-
chical TS-FS model. The hierarchical structure is evolved using
a probabilistic incremental program evolution (PIPE) [21]-[23]
with specific instructions, an algorithm originally used for au-
tomatic program synthesis. The fine tuning of the rule’s pa-
rameters encoded in the structure is accomplished using evo-
lutionary programming (EP). The proposed method interleaves
both PIPE and EP optimizations. Starting with random struc-
tures and rules’ parameters, it first tries to improve the hierar-
chical structure and then as soon as an improved structure is
found, it fine tunes its rules’ parameters. It then goes back to
improve the structure again and, provided it finds a better struc-
ture, it again fine tunes the rules’ parameters. This loop con-
tinues until a satisfactory solution (hierarchical TS-FS model)
is found or a time limit is reached. The novelty of this paper is
in the usage of evolutionary mechanism for selecting the impor-
tant features and for constructing a hierarchical TS fuzzy model
automatically.

The rest of the paper is organized as follows. A new encoding
method and a computational model for the hierarchical TS-FS
are given in Section II. An automatic design method for the
hierarchical TS-FS is presented in Section III. Some simula-
tion results and discussions related to system identification and
time-series prediction problems are provided in Sections IV and
V, respectively. Finally in Section VI we present some conclu-
sions and future works.

TS Fuzzy Inference System (TS-FS)

Fuzzy inference systems are composed of a set of IF-THEN
rules. A TS fuzzy model has the following form of fuzzy rules
[1]:

R;:ifxy is Ay; and w2 is Ap; and ...

and z,, is Ay;

Theny = g;(z1,22,-..,%n),

where g;(-) is a crisp function of ;. Usually,
9i(T1,22,...,2,) = Wo + w1T1 + wWoT2 + - -+ + Wy, The
overall output of the fuzzy model can be obtained by:

v
2 9 (VT2 pij ()
y=" (1

N
'21 T2 i (i)
j=

where 1 < m; < n is the number of input variables that appear
in the rule premise, N is the number of fuzzy rules, n is the
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Fig. 1. Example of possible hierarchical fuzzy logic models, number of inputs:
4, number of layers: 3.

number of inputs, y;; is the membership function for fuzzy set,
A;; and T is a T-norm for fuzzy conjunction.

The TS-FS is a single-stage fuzzy system. It is important to
partition the input space using some clustering, grid partitioning
etc. [34]. The shapes of membership functions in the antecedent
parts, and the free parameters in the consequent parts are also to
be determined using some adaptive techniques [35], [36], [51].

II. HIERARCHICAL TS-FS: ENCODING AND EVALUATION

An hierarchical fuzzy inference system not only provides a
more complex and flexible architecture for modelling nonlinear
systems, but can also reduce the size of rule base to some ex-
tend. Fig. 1 depicts some possible hierarchical TS-FS models
for 4 input variables and 3 hierarchical layers. The problems
in designing a hierarchical fuzzy logic system include the fol-
lowing:

* selecting an appropriate hierarchical structure;

* selecting the inputs for each fuzzy TS sub-model,

» eetermining the rule base for each fuzzy TS sub-model;

* optimizing the parameters in the antecedent parts and the

linear weights in the consequent parts.

There is no direct/systematic method for designing the hierar-
chical TS-FS. From the evolution point of view, finding a proper
hierarchical TS-FS model can be posed as a search problem
in the structure and parameter space. For this purpose, a new
encoding method for hierarchical TS-FS is developed in Sec-
tion II-A.

A. Encoding

A tree-structural based encoding method with specific in-
struction set is selected for representing a hierarchical TS-FS in
this research. The reasons for choosing this representation are
that: 1) the tree has a natural and typical hierarchical layer; and
2) with predefined instruction sets, the tree can be created and
evolved using the existing tree-structure-based approaches, i.e.,
genetic programming (GP) and PIPE algorithms.

Assume that the wused instruction set is [ =
{+2,+3,21, 22,23, 24}, where +5 and +3 denote
nonleaf nodes’ instructions taking 2 and 3 arguments,
respectively. x1, x2, 3, x4 are leaf nodes’ instructions taking
zero arguments each. In addition, the output of each non-leaf
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Fig. 2. Tree structural representation of the hierarchical T-S fuzzy
models as shown in Fig. 1(a)-(d), where the used instruction set is
I = {4243 21,22, 23,24 }.

node is calculated as a single TS fuzzy sub-model. For this
reason the non-leaf node +5 is also called a two-input TS
fuzzy instruction/operator. Fig. 2 illustrates the tree structural
representation of the hierarchical TS fuzzy models (as per in
Fig. 1).

It should be noted that in order to calculate the output of
each TS fuzzy sub-model (non-leaf node), parameters in the an-
tecedent parts and consequent parts of the TS fuzzy sub-model
should be embedded into the tree.

B. Evaluation

In this subsection, we describe an illustrative example to show
how the hierarchical TS-FS tree is calculated. The output of a
hierarchical TS-FS tree can be calculated from a layer to layer.
For simplicity, the calculation process of the tree [Fig. 2(a)] is
illustrated later.

Assume that each input variable is divided into two fuzzy sets
and the used fuzzy membership function is

1

S — )
1+ (252)°

pla, b;x) =

First, the output of the TS fuzzy sub-model (node +2 ) is
computed. Assume that the used fuzzy sets for variables z3 and
x4 are A11, Ao and Ay, Ass, respectively. Suppose that the
parameters in the consequent parts of rule base are c%, c,}j, c?j,
(¢ = 1,2 and 7 = 1, 2). These free parameters are encoded in
the node +2. Therefore, the corresponding fuzzy rules of node

+2 can be described as:

Ri,j :

Yij :c?j + ciljxg + c?jm, fori =1,2 andj =1, 2.

ifxg is Ay; and x4 is Ao; then

The output of node +2 can be calculated based on the TS fuzzy
model

3

where
Oij = KAy, (x?))UAzj (z4) fori=1,2 andj = 1,2.

Second, the overall output of the hierarchical TS fuzzy model
is computed. It has three inputs, 1, x5 and y, the output of the
TS fuzzy sub-model (node +3). Assume that the used fuzzy
sets for variables x1, x5 and y are: B11, By, Bo1, Bes, Bsy,
and Bso, respectively. Suppose that the parameters in the con-
sequent parts of rule base are d?jl, diljl, d?jl, and dfjl (1=1,2,
7 =1,2,1 =1,2). These free parameters are encoded in node
+3. The complete fuzzy rules of node +3 can be described as
follows:

Riij :ifxy is By, 2o 18 sz, y is B3; then
Zijl = d(i)jl + diljlxl + dz‘ZﬂxZ + dszy»
fori=1,2, andj=1,2 andl =1,2.

Thus, the overall output of the tree is

p=t )

where

Mijl(f1717172, y) = UBy; (xl)Msz (.’172)/1,33[ (y>

It should be noted that all the parameters encoded in the tree
are randomly generated along with the creation of the tree ini-
tially, which will be further optimized using evolutionary pro-
gramming.

C. Objective Function

The fitness function used for the PIPE and EP is given by
mean square error (MSE)

P
Fit(i) = % > (y{ - y{;)2 )
j=1

or root mean square error (RMSE )

P

3 (v —ud) ©)

i=1

Fity(i) =
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where P is the total number of samples, y{ and y% are the actual
and hierarchical TS-FS model outputs of j -th sample. F'ity(4)
and F'ito (i) denote the fitness value of the ith individual.

III. EVOLUTIONARY DESIGN OF HIERARCHICAL TS-FS

In this section, an automatic design method of hierarchical
TS-FS is presented. The hierarchical structure is created and
optimized using PIPE with specific instructions and the fine
turning of the rule’s parameters encoded in the structure is ac-
complished using EP algorithm.

A. PIPE

PIPE [21]-[23] combines probability vector coding of pro-
gram instructions, population based incremental learning [24],
[25], and tree-coded programs [32]. PIPE iteratively generates
successive populations of functional programs according to an
adaptive probability distribution, represented as a probabilistic
prototype tree (PPT), over all possible programs. Each iteration
uses the best program to refine the distribution. Thus, the struc-
tures of promising individuals are learned and encoded in PPT.

1) Instructions and Programs: In PIPE, programs are made
of instructions from an instruction set S = {I1,I>,...,I,}
with n instructions. Instructions are user-defined and problem
dependent. Each instruction is either a function or a ter-
minal. Instruction set S, therefore, consists of a function set
F = {f1,f2,.-., fr} with k functions and a terminal set
T = {t1,ts,...,t;} with [ terminals, where n = k + [ holds.

Programs are encoded in n -ary trees, with n being the max-
imal number of function arguments. Each nonleaf node encodes
a function from F’ and each leaf node a terminal from 7'. The
number of subtrees each node has corresponds to the number
of arguments of its function. Each argument is calculated by a
subtree. The trees are parsed depth first from left to right.

2) PPT: The PPT stores the knowledge gained from expe-
riences with programs and guides the evolutionary search. It
holds random constants and the probability distribution over all
possible programs that can be constructed from a predefined in-
struction set. The PPT is generally a complete n-ary tree with
infinitely many nodes, where n is the maximal number of func-
tion arguments.

Each node Nj; in PPT, with j > 0 contains a random con-
stant I7; and a variable probability vector ﬁj. Each 13]- has n
components, where n is the number of instructions in instruc-
tion set S. Each component P;(I) of P} denotes the probability
of choosing instruction I € S at node IN;. Each vector P} is
initialized as follows:

VI:IeT 7

1-P
Pi(I) = k_T VI:IeF (8)

where [ is the total number of terminals in 7", k is the total
number of functions in F', and Py is initially user-defined con-
stant probability for selecting an instruction from 7'.

3) Program Generation, Growing and Pruning: Programs
are generated according to the probability distribution stored in
the PPT. To generate a program Pro¢ from PPT, an instruction
I € S is selected with probability P;(I) for each accessed node
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N; of PPT. Nodes are accessed in a depth-first way, starting at
the root node and traversing PPT from left to right.

A complete PPT is infinite, and each PPT node holds a prob-
ability for each instruction, a random constant, and n pointers
to following nodes, where n is PPT’s arity. Therefore, a large
PPT is memory intensive. To reduce memory requirements, it is
thus possible to incrementally grow and prune the PPT.

On one hand, it is useful to grow the PPT on demand in order
to create a variety of programs. Initially the PPT contains only
the root node. Additional nodes are created with each program
that accesses nonexisting nodes during its generation. On the
other hand, apart from reducing memory requirements, pruning
also helps to discard the elements of probability distribution
that have become irrelevant over time. PPT subtrees attached
to nodes that contain at least one probability vector component
above a threshold T’p can be pruned. If T'p is set to a sufficiently
high value (e.g., Tp = 0.99999) only parts of the PPT will be
pruned that have a very low probability of being accessed. In
case of functions, only those subtrees should be pruned that are
not required as function arguments. Fig. 3 illustrates the relation
between the prototype tree and a possible program tree.

4) Fitness Functions: Similar to the other evolutionary
algorithms, PIPE uses a problem-dependent and user-defied
fitness function. A fitness function maps programs to scalar,
real-valued fitness values that reflect the programs’ perfor-
mances on a given task. Firstly PIPE’s fitness functions should
be seen as error measures, i.e., MSE [(5)] or RMSE [(6)]. A
secondary nonuser-defined objective for which PIPE always
optimizes programs is the program size as measured by number
of nodes. Among programs with equal fitness smaller ones
are always preferred. This objective constitutes PIPE’s built-in
Occam’s razor.

5) Learning Algorithm: PIPE combines two forms of
learning: Generation-based learning (GBL) and elitist learning
(EL). GBL is PIPE’s main learning algorithm. EL’s purpose
is to make the best program found so far as an attractor. PIPE
executes:

GBL

REPEAT

with probability P.; DO EL
otherwise DO GBL

UNTIL termination criterion is reached.

Here, P,; is a user-defined constant in the interval [0, 1].

Generation-Based Learning

Step 1. Creation of Program Population. A population of
programs Prog; (0 < j < PS ; PS is population size)
is generated using the prototype tree PPT, as described in
Section III-A . The PPT is grown on demand.

Step 2. Population Evaluation. Each program Prog, of the
current population is evaluated on the given task and assigned a
fitness value F'I T(PROG].) according to the predefined fitness
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Fig. 3. Example of node Ny o ’s instruction probability vector P; o (left). Probabilistic prototype tree PPT (middle). Possible extracted program Pro¢, at the
time of creation of instruction I o, the dashed part of Pro did not exist yet (right).

function. The best program of the current population (the one
with the smallest fitness value) is denoted Pro¢, . The best
program found so far (elitist) is preserved in PROGQZ.

Step 3. Learning from Population. Prototype tree
probabilities are modified such that the probability P(Proc, )
of creating Prog, increases. This procedure is called adapt
PPT towards(Progb). This is implemented as follows. First
P(Pgrog,) is computed by looking at all PPT nodes N; used
to generate Prog,:

P (Prog,) = 11 Pj (I;(Prog,))
j:N; used to generate Prog,

)]
where I;(Prog,) denotes the instruction of program Prog,
at node position j. Then a target probability Prarger for
Prog, 1s calculated:

Prarcer = P(Prog,) + (1 — P(Proa,))
e+ FIT (PROGEI)
e+ FIT(PROGb)

Ar - (10)
here [r is a constant learning rate and ¢ a positive user-defined
constant. Given PrarggT, all single node probabilities
P;(I;(Prog,)) are increased iteratively.

REPEAT:

P; (I;(Prog,))

= Pj (Ij(PROGb)) + Clr - (1 — Pj (Ij(PROGb)))~ (11)

UNTIL P (Proc,) > Prarcer

where ¢!” is a constant influencing the number of iterations. The
smaller ¢! the higher the approximation precision of PrarGET
and the number of required iterations. Setting ¢/ = 0.1 turned
out to be a good compromise between precision and speed.
Then, all adapted vectors P;- are renormalized.

Step 4. Mutation of Prototype Tree. All probabilities P;(1)
stored in nodes N; that were accessed to generate program
Prog, are mutated with a probability Py, :

Py __ Pu
" n-+/|Prog,|

where the user-defined parameter Py, defines the overall
mutation probability, n is the number of instructions in
instruction set S and |Prog, | denotes the number of nodes in
program Prog, . Selected probability vector components are
then mutated as follows:

12)

Pi(I) = P;y(I) + mr - (1 = P;(I)) (13)
where mr is the mutation rate, another user-defined parameter.
Also all mutated vectors P; are renormalized.

Step 5. Prototype Tree Pruning. At the end of each generation
the prototype tree is pruned, as described in Section I1I-B .

Step 6. Termination Criteria. Repeat above procedure
until a fixed number of program evaluations is reached or a
satisfactory solution is found.

Elitist Learning

Elitist learning focuses search on previously discovered
promising parts of the search space. The PPT is adapted to-
wards the elitist program Prog . This is realized by replacing
the Prog, with Proc® in learning from population in Step 3.
It is particularly useful with small population sizes and works
efficiently in the case of noise-free problems.

B. Special Instructions for Evolving the Hierarchical TS-FS

Evolving structured program is a fundamental approach for
restricting search space and speeding up evolution both in GP
and PIPE areas. The basic PIPE algorithm has been extended
by using hierarchical instructions and skip nodes in hierarchical
PIPE (H-PIPE) [22], [23].
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However, H-PIPE cannot be directly used for evolving the hi-
erarchical TS-FS due to its linear representation of hierarchical
layers. To create an appropriate hierarchical TS-FS architecture,
a specified instruction set is proposed in this research

I—{+2,+37....+N T1,T9 ..,."I,‘n} (14)
where +;(: = 2,3, ..., N) is i-inputs TS fuzzy instruction as
discussed at Sections II-A and B. z1, x2, . . ., x,, are inputs vari-

ables. and n is the number of the inputs variables. Nonterminal
instruction, +;(7 = 2, 3,..., N) plays a key role for generating
the hierarchical layer (stage) of the TS-FS. The input selection
method on how to assign inputs to different hierarchical layer is
accomplished by the PIPE algorithm automatically.

It should be noted that the hierarchical TS-FS tree may grows
large and contains redundant information without any constrains
on the hierarchical layer (maximum depth in hierarchical TS-FS
tree). Therefore, for implementing the algorithm, the maximum
number of hierarchical layers is predefined in our experiments.

C. Parameter Optimization

1) Basics of Evolutionary Programming: Evolutionary al-
gorithms constitute a universal optimization method that imi-
tates the type of genetic adaptation that occurs in natural evo-
lution [37]. Unlike specialized methods designed for particular
types of optimization tasks, they require no particular knowl-
edge about the problem structure other than the objective func-
tion itself. A population of candidate solutions evolves over
time by means of genetic operators such as mutation, recom-
bination and selection. The different types of evolutionary algo-
rithms, namely genetic algorithms (GAs), evolution strategies
(ES), evolutionary programming (EP), and genetic program-
ming (GP) all share the same principle mode of operation, but
utilize different genetic representations and operators.

Compared to GAs, the primary search operator in EP is muta-
tion. One of the major advantages of using mutation-based EA
is that they can reduce the negative impact of the permutation
problem. Hence the evolutionary process can be more efficient.
Gaussian mutation has been the most commonly used mutation
operator, but Cauchy mutation and other mutation operators can
also be used [29], [30]. Evolving free parameters of the hierar-
chical TS-FS model by EP can be implemented as follows.

i) Generate the initial population of p individuals, and set
iteration step k£ = 1. Each individual is taken as a pair of
real-valued vectors, (x;,7;),Vi € {1,...,u}, where z;’s
are free parameter vectors encoded in the hierarchical
TS-FS tree and 7;’s are variance vectors for Gaussian mu-
tations (also known as strategy parameters in self-adap-
tive EAs). Each individual corresponds to a hierarchical
TS-FS tree.

ii) Evaluate the fitness score [(5) or (6)] for each individual
of the population according to a task at hand.

iii) Each parent (x;,71;), % = 1,...,pu, creates a single off-

spring (i, ;) by

i(7) =ni(5) exp(TN(0,1) + 7N;(0, 1))
i(7) =i(j) +0:(4) - N;(0,1)

5)
(16)

SIS
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for j = 1,...,n, where z;(j), ;(j), n:(J) and 7;(5)
denote the jth component of the vectors z;, x;, 7; and
7;, respectively. N(0,1) denotes a normally distributed
random number. N;(0,1) indicates that the random
number is generated anew for each value of j; and
= (/2yn)" 7 = (vV2n)"! [27], [28].

iv) Calculate the fitness of each offspring.

v) Conduct pairwise comparison over union of parents and
offspring. For each individual, () opponents are chosen
randomly from all the parents and offspring with an equal
probability. For each comparison, if the individual’s fit-
ness is not smaller than the opponents’, the individual
wins.

vi) Select the p individual out of parents and offspring, that

has the most wins to qualify as a parent of the next gen-

eration.

Stop if the number of EP search iterations have reached;

otherwise, k = k + 1 and go to step iii).

2) Enhancements of the Basic EP: The convergence speed
of EP algorithm depends largely on the search steps. In order to
control the convergence speed and enhance the performance of
EP search, we introduced a scale factor «, and a dynamic factor
o (k) shown in the (17) into the conventional EP

a(k):a-<1—0.9~§>.

The scale factor « is used to control step size of the search,
the variable term (1 — 0.9 - k/K) is used for further tuning of
the search precision, where k is the current generation number
varying from O to K, K is the maximum generation number of
EP search. Therefore, the update (16) is replaced by

vii)

7)

zi(4) = wi(j) + o (k) - m:(7) - N;(0,1). (18)

D. The Proposed Algorithm for Designing of
Hierarchical TS-FS Model

Combining the self-organizing and structure learning charac-
teristics of PIPE and the parameter optimization ability of EP,
we propose the following hybrid algorithm for designing the hi-
erarchical TS-FS model (Fig. 4).

1) Setthe initial values of parameters used in the PIPE and EP
algorithms. Set the elitist program as NULL and its fitness
value as a biggest positive real number of the computer at
hand. Create the initial population (tree) and corresponding
parameters used in hierarchical TS-FS model.

2) Do structure optimization using PIPE algorithm as de-
scribed in Section III-A, in which the fitness function is
calculated by (5) or (6).

3) If the better structure found, then go to step 4), otherwise
go to step 2). The criterion concerning with better structure
found is distinguished as follows: If the fitness value of the
best program is smaller than the fitness value of the elitist
program, or the fitness values of two programs are equal
but the nodes of the former is lower than the later, then we
say that the better structure is found.
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Fig. 4. Flow chart of the proposed algorithm for designing the hierarchical
TS-FS model.

4) Parameter optimization using EP search as described in
Section ITI-C. In this step, the tree structure or architecture
of hierarchical TS-FS model is fixed, and it is the best tree
taken from the end of run of PIPE search. All of the rules’
parameters encoded in the best tree will be optimized by
EP search in order to decrease the fitness value of best
program.

5) If the maximum number of EP search is reached, or no
better parameter vector is found for a significantly long
time (100 steps) then go to step 6); otherwise go to step
4).

6) If satisfactory solution is found, then stop; otherwise go to
step 2).

E. Feature/Input Selection With Hierarchical TS-FS

It is often a difficult task to select important variables for pre-
diction and classification problems, especially when the feature
space is large. A predefined single/multilevel fuzzy model usu-
ally cannot do this. In the perspective of evolution-driven hierar-
chical TS-FS framework, the nature of model construction pro-
cedure allows the H-TS-FS to identify important input features
in building an prediction or classification model that is compu-
tationally efficient and effective. The mechanisms of input se-
lection in the H-TS-FS constructing procedure are as follows.
* Initially the input variables are selected to formulate the
Hierarchical TS-FS model with same probabilities.

* The variables that has more contribution to the objective
function will be enhanced and have high opportunity to
survive in the next generation by a evolutionary procedure.

TABLE 1
PARAMETERS USED IN THE PIPE ALGORITHM
Parameters Values
population size P.S 100
elitist learning probability P,; 0.01
learning rate Ir 0.01
fitness constant € 0.000001

overall mutation probability Py; 0.4
mutation rate mr 0.4

* The evolutionary operators, i.e., crossover and mutation,
provide a input selection method by which the hierarchical
TS-FS would select the appropriate variables automati-
cally.

1IV. EXPERIMENTS

The proposed approach has been evaluated for nonlinear
system identification problems, Mackey—Glass chaotic time-se-
ries prediction problem, and the Iris and Wine classification
problems. Sections IV-A-D discuss these applications and
the results obtained by the evolutionary design of hierarchical
TS-FS model and the performance is compared with other
fuzzy/neural learning approaches.

The used parameters in PIPE are shown in Table 1. The pa-
rameters used in EP: population size is 60, opponent number
@ = 30, a = 0.3. For all the simulations, the minimum and
maximum number of hierarchical layers are predefined as 2 and
4 and each input variable is partitioned into 2 fuzzy sets. The
used fuzzy membership function is shown in (2). The initial
fuzzy rules for each sub-fuzzy systems are randomly generated
and all the free parameters including fuzzy sets membership
function parameters and the free parameters in the consequent
parts of fuzzy rules are randomly generated at [0, 1] initially.
It should be noted that the selection of the nonleaf’s instruc-
tion is experimental. Selecting more instructions will increase
the structure/parameter search space and results in a bigger hi-
erarchical TS fuzzy system. For an identification or classifica-
tion problem, if the input number is n, selecting the maximum
instruction 4+ as N = n/3 is enough according to our exper-
iments. This experimental rule should reduce the search space
significantly.

A. Systems Ildentification
The first plant to be identified is a linear system given by [26]

y(k+1) =2.627771y(k) — 2.333261y(k — 1)
+0.697676y(k — 2) + 0.017203u(k)

— 0.030862u(k — 1)

(

-1
+ 0.014086u(k — 2). (19)

400 data points were generated with the randomly selected input
signal u(k) between -1.0 and 1.0. The first 200 points were used
as training data set and the remaining data were used as val-
idation data set. The input vector is set as = [y(k),y(k —
1), y(k—2),u(k),u(k —1),u(k — 2)]. The used instruction set
is] = {+27 +3, 44,0, T1, 22,23, T4, $5}'

10 independent runs were taken. The average training time
for ten runs is 245 seconds. The best structure of evolved hier-

archical TS-FS model is shown in Fig. 5(a). The output of the
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Fig. 5. Structure of evolved hierarchical TS-FS models. (a) Plant 1. (b) Plant 2.
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Fig. 6. Actual and evolved outputs of the plant 1 for (a) the test data set and (b)
the test error.

evolved model, the actual output and the test error for test data
set are illustrated in Fig. 6.

The second plant to be identified is a nonlinear system given
by [26]

y(k)
k+1)= —————~—-03y(k—1 0.5u(k). 2
y(k+1) 5+ 920 y( ) +0.5u(k).  (20)
The input and output of system are x(k) = [u(k),u(k —

1),y(k),y(k — 1)] and y(k + 1), respectively.

The training samples and the test data set are gener-
ated by using the same sequence of random input sig-
nals as mentioned previously. The used instruction set is
I= {+2,+3,+4,$0,$1,$2,l‘3}.
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Fig. 7. Actual and evolved outputs of the plant 2 for (a) the test data set and (b)
the test error.

TABLE II
THE COMPARISON OF THE MSE VALUES FOR MODIFIED ELMAN NETS [26],
MODIFIED JORDAN NETS [26], WAVELET NEURAL NETWORKS (WNN) [41]
AND HIERARCHICAL TS-FS MODEL FOR TEST DATA SET

Plant Elman Jordan WNN H-TS-FS
1 0.0000548  0.0000492  0.000000459  0.0000000432
2 0.0004936  0.0003812  0.000002728  0.0000007065

Ten independent runs were run. The average training time of
ten runs is 317 seconds. The best structure of evolved hierar-
chical TS-FS model is shown in Fig. 5(b). The output of the
evolved model, the actual output and the test error for test data
set are shown in Fig. 7.

For comparison, the test results obtained by Elman and Jordan
neural networks [26], Wavelet Neural Networks (WNN) [41]
and the proposed H-TS-FS model are shown in Table II. From
the above simulation results, it is evident that the proposed hier-
archical TS-FS model works very well for identifying the linear/
nonlinear systems much better than the neural network models.

B. Chaotic Time-Series of Mackey—Glass

The Mackey-Glass chaotic differential delay equation
is recognized as a benchmark problem that has been used
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Fig. 8. Two possible structures of hierarchical TS-FS models for predicting
the Mackey—Glass time-series: With (a) RMSE = 0.01205 and (b) RMSE =
0.01417.

and reported by a number of researchers for comparing the
learning and generalization ability of different models. The
Mackey—Glass chaotic time series is generated USING the
following differential equation:

dx(t) _ ax(t—T)
dt 14210t — 1)

— bx(t) (21)
where a = 0.2 and b = 0.1, 7 > 17 the equation shows chaotic
behavior. In our simulations, 7 = 30 has been adopted. To com-
pare with previous works [33], we predicted the value of z(t+6)
using the input variables z (¢ —30), z(t—24), z(t—18), (t—12),
x(t — 6) and x(t), where ¢ = 130 to ¢ = 1129. It corresponds
to a 6-input to 1-output mapping.

1000 sample points were used in our study. The first 500
data pairs were used as training data, while the remaining
500 were used to validate the model identified. The used
instruction set is I = {42, 43, %0, %1, %2, T3, T4, x5}, Where
To, X1, T2, T3, Tq, 5 denote x(t — 30), x(t — 24), x(t — 18),
x(t — 12), z(t — 6), and z(t), respectively.

The results are obtained from training the hierarchical TS-FS
models using 10 different experiments. The average training
time of ten runs is 719 s. The average RMSE value for training
and test data sets are 0.017 and 0.015, respectively.

Two evolved structures of hierarchical TS-FS models are
shown in Fig. 8. A comparison has been made to show the
actual time-series, the hierarchical TS-FS model output and the
prediction error [Fig. 9(a)]. Fig. 9(b) shows the convergence
performance of the best hierarchical TS-FS model. Perfor-
mance comparison of the different methods for approximating
the Mackey—Glass data is shown in Table III.

C. lIris Data Classification

The Iris data is a common benchmark in classification and
pattern recognition research [42]. It contains 50 measurements
of four features from each of the three species Iris setosa, Iris
versicolor, and Iris virginica [44]. We label the species 1-3, re-
spectively, which gives a 5 X 150 pattern matrix of observation
vectors

c, €1,2,3, k=1,2,...,150

(22)
where 7%, 2%, 2%, and z% are the sepal length, sepal width, petal
length, and petal width, respectively.

T k k k .k
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Fig. 9. Actual time-series, model output and prediction error for (a) test data
set and (b) fitness curve for training.

TABLE III
COMPARISON OF THE INCREMENTAL TYPE MULTILEVEL FRS (IFRS) [33], THE
AGGREGATED TYPE MUTILEVEL FRS (AFRS) [33], AND THE HIERARCHICAL
TS-FS IN MACKEY -GLASS TIME -SERIES PREDICTION (H-TS-FS1 AND
H-TS-FS2 ARE CORRESPONDING TO THE MODEL STRUCTURES SHOWN IN
FIG. 8 (RIGHT) AND FIG. 8 (LEFT), RESPECTIVELY )

Model Stage  Rules  Parameters RMSE RMSE

training  testing
IFRS 4 25 58 0.0240  0.0253
AFRS 5 36 78 0.0267 0.0256
H-TS-FS1 3 28 148 0.0120  0.0129
H-TS-FS2 2 12 46 0.0145 0.0151

In our simulations, we normalized each attribute value into a
real number in the unit interval. Table IV shows the results of
some well-known classifier systems. For the Iris example, we
also used 150 patterns to design a hierarchical TS-FS classifier
system via the proposed algorithm. The used instruction set is
F = {+42,+3,21,22,23,24}.

Table V shows the results of ten runs (i.e., ten different initial-
izations of parameters). To estimate the performance of the pro-
posed method on unseen data, the five-fold cross-validation was
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TABLE IV
COMPARISON OF RESULTS FOR IRIS DATA
Term sets Rules  Recognition rate (%)
Wang et al. [45] 11 3 97.5
Wu et al. [46] 9 3 96.2
Shi et al. [5] 12 4 98.0
Russo [47] 18 5 100
Ishibuchi et al. [43] 7 5 98.0
This paper - 16 99.6
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Fig. 10. Evolved optimal H-TS-FS architectures for five-fold cross-validation
(Iris data).

performed on the iris data. In the five-fold cross-validation ex-
periment, the normalized iris data were divided into five disjoint
groups containing 30 different patterns each, with ten patterns
belonging to each class. Then we derived the hierarchical TS-FS
models via the proposed method on all data outside one group
and tested the resulting hierarchical TS-FS classifier on the data
within that group. Finally, five hierarchical TS-FS were derived.
The evolved hierarchical architectures for five-fold cross-vali-
dation are shown in Fig. 10. The convergence performance of
five-fold cross validation test 3 is shown in Fig. 11(a). Table VI
reports the results of five-fold cross validation. The average clas-
sification result is 100.0% correct (no misclassifications) on the
training data and 99.34% correct (average about 0.2 misclassi-
fication) on the test data using 17.6 rules (average).

D. Wine Data Classification

The proposed hierarchical TS-FS model is applied to wine
data. The wine data set is a 13-dimensional problem with 178
samples from three classes. We chose this data set because it
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Fig. 11. Convergence performance of five-fold cross validation test 3 for (a)
Iris data and (b) Wine data.

TABLE V
RESULTS OF TEN RUNS ON IRIS DATA

1 2 3 4 5 6
Misclassification 1 1 0 0 0 1
Recognition rate (%) 99.3 993 100 100 100 99.3
Features 4 4 3 4 4 3
Rules 12 12 16 20 20 12
Parameters 64 60 84 108 108 60

Training time (m) 8 12 21 17 22 9
7 8 9 10 Average

Misclassification 1 1 1 0 0.6
Recognition rate (%) 993 993 993 100 99.6
Features 4 4 3 4 3.7

Rules 12 16 20 20 16
Parameters 64 84 104 108 844
Training time (m) 19 12 25 11 16.7

TABLE VI
FIVE-FOLD CROSS VALIDATION FOR IRIS DATA
1 2 3 4 5 Aver.(%)
Rules 12 20 20 24 12 17.6
Training patterns 120 120 120 120 120 120
Misclassification (train) 0 0 0 0 0 0
Recog. rate (train)(%) 100 100 100 100 100 100
Testing patterns 30 30 30 30 30 30
Misclassification (test) 0 0 0 0 1 0.2
Recog. rate (test)(%) 100 100 100 100 96.7 99.34

involves many continuous attributes. We normalized each at-
tribute value into a real number in the unit interval.

Table VII shows the results of some well-known classifier
systems. For the wine data, we also used 178 patterns to design a
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TABLE VII
COMPARISON OF RESULTS USING WINE DATA

Features Term sets Rules Recog. rate(%)
Setnes et al. [48] 9 21 3 98.3
Wang et al. [45] 13 34 3 99.4
Roubos et al. [49] 5 15,11,10 3 98.9, 98.3. 99.4
Ishibuchi et al. [43] - 9 6 100
This paper 4.9 - 16.4 99.6

TABLE VIII
RESULTS OF TEN RUNS ON WINE DATA
1 2 3 4 5 6
Misclassification 0 1 1 1 1 0
Recognition rate (%) 100 994 994 994 994 100
Features 5 4 4 5 5 6
Rules 16 12 12 20 16 20
Parameters 84 60 64 108 84 108
Training time (minutes) 10 14 23 19 24 13
7 8 9 10 Average

Misclassification 1 1 0 1 0.7
Recognition rate (%) 994 994 100 994  99.6
Features 4 6 6 4 49
Rules 12 20 20 16 16.4
Parameters 64 108 108 84 87.2
Training time (minutes) 22 24 28 18 19.5

hierarchical TS-FS classifier system via the proposed algorithm.
The used instruction set is F' = {429, +3, +4, 21, 22,...,213}.

Table VIII illustrates the empirical results of ten runs (i.e.,
ten different initializations of parameters). To estimate the
performance of the proposed method on unseen data, the
five-fold cross-validation was performed on the Wine data. In
the five-fold cross-validation experiment, the normalized Wine
data were divided into five disjoint groups. Then we derived the
hierarchical TS-FS models via the proposed method on all data
outside one group and tested the resulting hierarchical TS-FS
classifier for the data within that group.

Finally, five hierarchical TS-FS were derived. The evolved hi-
erarchical architectures for five-fold cross-validation are shown
in Fig. 12. The convergence performance of five-fold cross val-
idation test 3 is shown in Fig. 11(b). Table IX reports the results
of five-fold cross validation. The average classification result is
100.0% correct (no misclassifications) on the training data and
99.4% correct (average about 0.2 misclassification) on the test
data using 22.4 rules (average).

V. DISCUSSIONS

One major advantage of using a hierarchical TS-FS or a mu-
tilevel fuzzy system other than a single-level system (direct ap-
proach) is that the number of fuzzy rules and fuzzy operations
involved in modeling process can be reduced significantly when
compared with those required by the single-level counterparts.
Due to the limitations to solve the hierarchical TS-FS analyt-
ically, we choose to identify the hierarchical TS-FS using an
evolutionary optimization approach.

First, the hierarchical structure and the rules’ parameters can
be flexibly encoded into a TS-FS tree. And then, the PIPE and
the EP algorithms are employed to evolve the optimal structure
and parameters alternatively. The methods used by IFRS and
AFRS [33], the hierarchical structure and input selection are as-
signed based on: 1) analysis of the importance of each input
variables; and 2) analysis of the coupling between input vari-
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Fig. 12. Evolved optimal H-TS-FS architectures for five-fold cross-validation
(Wine data).

TABLE IX
FIVE -FOLD CROSS VALIDATION FOR WINE DATA
1 2 3 4 5 Aver.(%)
Rules 20 16 24 20 32 224
Training patterns 136 144 144 144 144 1424
Misclassification (train) 0 0 0 0 0 0
Recog. rate (train)(%) 100 100 100 100 100 100
Testing patterns 42 34 34 34 34 35.6
Misclassification (test) 0 1 0 0 0 0.2
Recog. rate (test)(%) 100 97.1 100 100 100 994

ables. In contrast to the IFRS and AFRS, the hierarchical struc-
ture and input selection in this research are accomplished using
an evolutionary procedure automatically.

The effectiveness of the proposed methods has been demon-
strated through various benchmark problems. Furthermore,
compared to the IFRS and AFRS the generated hierarchical
TS-FS model has some advantages in terms of the approxi-
mation accuracy, the number of rules and the number of free
parameters.

This paper provides a method that alternatively searches be-
tween the tree-structure space and parameter space by using the
PIPE and EP algorithms. But other tree-structure based evolu-
tionary algorithms and parameter learning algorithms can also
be used to solve the problem.

VI. CONCLUSION

Based on a novel representation and computational model of
the hierarchical TS-FS model, an approach for evolving the hier-
archical TS-FS was proposed in this paper. The hierarchical ar-
chitecture and inputs selection method of the hierarchical TS-FS
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were accomplished using PIPE algorithm, and the rules’ pa-
rameters embedded in the hierarchical TS-FS model were opti-
mized using a enhanced EP algorithm. Simulation results shown

that the evolved hierarchical TS-FS models are effective for the

identification of linear/nonlinear systems, for the prediction of

chaotic time-series, and for the classification of Iris and Wine
data.

It should be noted that the hierarchical TS-FS has smaller

number of rules than a single level (direct approach) TS-FS. The

number of rules and parameters would increase tremendously

(even difficult to manage) for large number of inputs if a direct

approach is used. This also results in slow convergent speed.

Our future works will concentrate on the following.

¢ Embedding rules’ deduction techniques in the proposed
hierarchical TS-FS.

» Improving the convergence speed of the proposed method
by parallel implementation of the algorithm.

* Apply the proposed approach to more complex problems
(real world applications).
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