
A Comparison of Many-threaded Differential Evolution and

Genetic Algorithms on CUDA

Pavel Krömer, Jan Platoš, Václav Snášel, Ajith Abraham

Department of Computer Science

FEECS, VŠB Technical University of Ostrava

Ostrava, Czech Republic

Email: pavel.kromer@vsb.cz,jan.platos@vsb.cz,vaclav.snasel@vsb.cz,ajith.abraham@ieee.org

Abstract—The recent time has seen the rise of consumer
grade massively parallel environments. Powerful GPUs and
multi-core processors became widely available and easy to
use programming APIs such as nVidia CUDA, OpenCL, and
DirectCompute simplify the development of applications that
can utilize them. In this environment, the nature inspired meta-
heuristics can be in suitable cases implemented in parallel
without additional costs. Backed by the power of modern
GPGPUs, the meta-heuristics can be deployed to solve practical
real world problems. In this paper, we compare differential
evolution and genetic algorithms implemented on CUDA when
solving the independent tasks scheduling problem.

Keywords-genetic algorithms, differential evolution, CUDA,
independent task scheduling

I. INTRODUCTION

Modern Graphics Processing Units (GPUs) represent a

budget environment for massively parallel computations.

Hand in hand with the wide availability of the hardware,

there are also APIs and modern development kits that

enable rapid development of parallel applications. Naturally,

many evolutionary algorithms including e.g. the genetic

algorithms, genetic programming, and differential evolution,

were implemented for the GPUs using different tools and

approaches. Such a GPU implementations were shown to

improve the performance of the algorithms dramatically and

the speedup of evolutionary algorithms obtained by the use

of the GPUs can contribute to the usage of evolutionary

computation for practical problems.

In this study we compare the efficiency of genetic al-

gorithms and differential evolution implemented on the

nVidia Compute Unified Device Architecture (CUDA) plat-

form. Both evolutionary algorithms were implemented from

scratch following the same design principles and we have

compared their performance when solving a benchmark

problem. The chosen benchmark problem was the indepen-

dent tasks scheduling problem, a well known combinato-

rial optimization problem that requires creating an efficient

schedule of execution of a set of independent tasks on a set

of resources (computing nodes). The problem was chosen

because it is a real world problem, it was addressed by both,

exact and meta-heuristic algorithms in the past, and there is

a data set to execute the experiments readily available.

Modern graphics hardware has gained an important role

in the area of parallel computing. Graphic cards have been

used to accelerate gaming and 3D graphics applications, but

recently, they have been used to perform general computa-

tions as well. The area of general purpose GPUs (GPGPUs)

programming has become a hot topic in parallel computa-

tion.

The main advantage of the GPU is its structure. Stan-

dard CPUs (central processing units) contain usually 1-4

complex computational cores, memory registers and large

cache memory. The GPUs contain up to several hundreds

of simplified execution cores grouped into so-called multi-

processors. Every SIMD (Single Instruction Multiple Data)

multiprocessor drives eight arithmetic logic units (ALU)

which process data, thus each ALU of a multiprocessor

executes the same operations on different data, stored in the

registers or device memory. In contrast to standard CPUs

which can re-schedule operations (out-of-order execution),

current GPUs are an example of an in-order architecture.

This drawback is overcome by their massive parallelism

as described by Hager et al. [1]. Current general-purpose

CPUs with clock rates of 3 GHz outperform a single ALU

of the multiprocessors with its rather slow 1.3 GHz. The

huge number of parallel processors on a single GPU chip

compensates this drawback.

The GPGPU programming has offered a new platform

for evolutionary computation [2]. The majority of the evo-

lutionary algorithms including genetic algorithms [3]–[5],

genetic programming [6], [7], and differential evolution [8]–

[10] were implemented on the GPU. Most of the current

implementations of said algorithms have two things in

common: they struggle with random number generation and

they map each candidate solution in the population to one

GPU thread.

The nVidia CUDA-C language is an extension to C that

allows development of GPU routines called kernels. Each

kernel defines instructions that are executed on the GPU by

many threads at the same time following the SIMD model.

The threads can be organized into so called thread groups

that can benefit from GPU features such as fast shared mem-

516978-1-4577-1123-7/11/$26.00 c©2011 IEEE

ory, atomic data manipulation, and synchronization. The

CUDA runtime takes care of the scheduling and execution of

the thread groups on available hardware. The set of thread

groups requested to execute a kernel is called in CUDA

terminology a grid. A kernel program can use several types

of memory: fast local and shared memory, large but slow

global memory, and fast read-only constant memory and

texture memory.

II. BRIEF INTRODUCTION OF GENETIC ALGORITHMS

AND DIFFERENTIAL EVOLUTION

The genetic algorithms (GA) are based on the software

implementation of genetic evolution [11]. Genetic algo-

rithms evolve a population of chromosomes representing

potential problem solutions encoded into suitable data struc-

tures (chromosomes). Candidate solutions are most often

encoded as binary strings, integer vectors, or real vectors.

Artificial evolution consists of the iterative application of

genetic operators, introducing to the algorithm evolutionary

principles such as inheritance, the survival of the fittest, and

random perturbations. Iteratively, the current population of

candidate solutions is modified with the aim of forming a

new and, it is hoped, better population to be used in the

next generation. The evolution of problem solutions ends

after specified termination criteria have been satisfied. After

the termination of the search process, the evolution winner is

decoded and presented as the most optimal solution found.

The differential evolution (DE) [12] is a population-based

evolutionary optimizer that evolves real encoded vectors

representing candidate solutions to given problem. The DE

starts with an initial population of N real-valued vectors.

During the optimization, DE generates new vectors that are

perturbations of existing population vectors. The algorithm

perturbs vectors with the scaled difference of two (or more)

randomly selected population vectors and adds the scaled

random vector difference to a third randomly selected pop-

ulation vector to produce so called trial vector (hence the

name differential evolution). The trial vector competes with a

member of the current population with the same index. If the

trial vector represents a better solution than the population

vector, it takes its place in the population [12].

Both algorithms are viable evolutionary meta-heuristics.

The differential evolution represents an alternative to the

concept of genetic algorithms. As well as genetic algorithms,

it represents a highly parallel population based stochastic

search meta-heuristic. In contrast to GA, differential evo-

lution uses real encoding of chromosomes and different

operations to evolve the population. It results in different

search strategy and different directions found by DE when

crawling a fitness landscape of the problem domain.

III. RELATED WORK

Ever since its inception, the GPGPUs were recognized

as the devices that can leverage the use of (not only)

evolutionary nature inspired meta-heuristics significantly.

The raw power of up to several hundred cores on a single

device can be utilized to accelerate various evolutionary

algorithms. Usually, the most expensive step in the artificial

evolution is the evaluation of candidate solutions, which

can be in most cases done in parallel. Nevertheless, an

efficient parallelization of the rest of the evolutionary meta-

heuristics is also a key to the optimal use of the resources

on the GPGPU devices. In this section, we provide brief

summary of recent implementations of the GA and DE on

the GPGPUs.

A. Genetic Algorithms on GPUs

The first attempts to run GAs on the GPUs predate

the public availability of GPGPU APIs. At that time, the

GA had to be translated to shader programs and the data

structures to textures. For example, the work of Wong and

Wong [13], [14], introduced a GPU parallelization of a

modified GA extended with the Cauchy mutation operator

used in evolutionary programming. Yu et al. [15] used the

GPU to execute a real encoded parallel GA and discussed the

different data structures mapped to GPU textures (population

texture, fitness texture, random texture).

In [3], Maitre et al. presented an overview of GA imple-

mentation efforts on CUDA and concluded, that the GA is

hard to implement in the SIMD environment. They presentd

a custom language, EASEA, to help implementing the GA in

parallel environments and achieved significant GA speedup

orders of magnitude large.

Tsutsui and Fujimoto [4] developed a parallel GA to solve

the quadratic assignment problem on CUDA and achieved

a 3 - 28 times faster solution when compared to the CPU.

Wong [5] proposed a CUDA implementation of a parallel

multi-objective GA and improved the execution times of the

algorithm 5 - 10 times.

B. Differential Evolution on GPUs

Due to the simplicity of its operations and fixed encoding

of candidate solutions, DE is suitable for parallel imple-

mentation on the GPUs. In DE, each candidate solution is

represented by a vector of real numbers and the population

as a whole can be seen as a real matrix. Moreover, both

mutation and crossover can be in DE implemented easily.

The first implementation of DE on the CUDA platform

was introduced in the early 2010 by de Veronese and

Krohling [9]. The DE algorithm was implemented using the

CUDA-C language and it achieved on a set of benchmarking

functions speedup between 19 and 34 times comparing to the

CPU implementation. The generation of random numbers

was implemented using the Mersenne Twister from the

CUDA SDK and the selection of random trial vectors for

mutation was done on the CPU.

Zhu [8], and Zhu and Li [10] implemented the DE

on CUDA as part of differential evolution-pattern search

2011 Third World Congress on Nature and Biologically Inspired Computing 517

algorithm for bound constrained optimization problems and

as a part of a differential evolutionary Markov chain Monte

Carlo method (DE-MCMC) respectively. In both papers,

performance of the algorithms was demonstrated on a set

of continuous benchmarking functions.

IV. IMPLEMENTATION OF GA AND DE

In this section we introduce the details of the implemen-

tation of GA and DE on the CUDA platform. The goal of

the implementation of both algorithms was achieving high

parallelism while keeping the simplicity of the algorithms.

Also, it is designed to avoid two common properties of up-

to-date GA and DE implementations for CUDA: the candi-

date solution to single thread mapping (we use many threads

to process each candidate solution) and the problems with

random numbers generation (we use cuRAND to generate

pseudorandom numbers on the GPU). The overall goal of

the implementations is to to process each candidate solution

by many threads during both, fitness function evaluation and

evolutionary operations.

The implementations consists of a set of CUDA-C kernels

for generation of initial population, generation of batches of

pseudorandom numbers for decision making, merger of the

old and new populations, the implementation of the opera-

tions specific for each meta-heuristic, and for evaluation of

candidate solutions.

The kernels were implemented using the following prin-

ciples:

i. Each candidate solution is processed by a thread block

(thread group). The number of thread groups is in

CUDA currently limited to (216 − 1)2 and hence the

maximum population size is in this case the same.

ii. Each candidate solution gene (vector coordinate) is

processed by a thread. The limit of threads per block

depends in CUDA on the hardware compute capability

and it is 512 for compute capability 1.x and 1024
for compute capability 2.x [16]. This limit enforces

the maximum vector length. For the first use case

considered in this paper, candidate vectors with length

512 are needed.

iii. Each kernel call aims to process the whole population

in one step, e.g. it asks the CUDA runtime to launch

M blocks with 512 threads in parallel. The runtime

executes the kernel with respect to available resources.

The flowchart of used DE implementation is shown

in Fig. 1 and the flowchart of used GA implementation is

shown in Fig. 1. The DE is rather straightforward, but the

GA contains additional steps such as pre-selection of parents

and optional pre-computation of data for migration. They

are performed on the CPU due its higher complexity. Parent

selection is done on the CPU and for steady-state GA, the

chromosomes to establish new population are selected by

the CPU (pre-compute migration step).

This implementation brings several advantages. First, all

the generic operations can be considered done in parallel and

thus their complexity reduces from M ×N (population size

multiplied by vector length) to c (constant, duration of the

operation plus CUDA overhead). Second, this implementa-

tion operates in a highly parallel way also on logical level. A

population of offspring candidate solutions of the same size

as the parent population is created in a single step and later

merged with the parent population. Third, the evaluation of

fitness function is accelerated by the GPU.

Figure 1: The flowchart of the DE implementation on

CUDA.

V. COMPUTATIONAL EXPERIMENTS

In this section we describe computational experiments

conducted in order to find out which algorithm performs

better for a given test problem.

A. Independent task scheduling

Independent task scheduling can be defined as a mapping

of a set of tasks to a set of resources [17], [18]. Efficient

scheduling is required to exploit the different capabilities of

a set of heterogeneous resources but it is an NP-complete

problem [19] and it cannot be solved by exact methods

in reasonable time. Instead, it was a subject to various

heuristic [18], [20], [21] and meta – heuristic [22]–[26]

algorithms.

518 2011 Third World Congress on Nature and Biologically Inspired Computing

Figure 2: The flowchart of the GA implementation on

CUDA.

Let T = {T1, T2, . . . , Tn} denote the set of independent

tasks with no inter-task dependencies that is in a specific

time interval submitted to a resource management system

(RMS). Assume at the time of receiving these tasks by RMS,

m machines M = {M1,M2, . . . ,Mm} are available and

no preemption is allowed (i.e. the tasks cannot change the

resource they have been assigned to). Scheduling is done

on machine level and it is assumed that each machine uses

First-Come, First-Served (FCFS) method for performing the

received tasks. We assume that each machine can estimate

how much time it requires to perform each task. In [18]

Expected Time to Compute (ETC) matrix is used to estimate

the required time for executing a task in a machine. An ETC

matrix is a n×m matrix in which n is the number of tasks

and m is the number of machines. One row of the ETC

matrix contains the estimated execution time for a given task

on each machine. Similarly one column of the ETC matrix

consists of the estimated execution time of a given machine

for each task. Thus, for an arbitrary task Tj and an arbitrary

machine Mi , [ETC]j,i is the estimated execution time of

Tj on Mi. In the ETC model we take the usual assumption

that we know the computing capacity of each resource, an

estimation or prediction of the computational needs of each

job, and the load of prior work of each resource.

The two objectives to optimize during the task mapping

are makespan and flowtime. Optimum makespan (meta-task

execution time) and flowtime of a set of jobs can be defined

as:

makespan = min
S∈Sched

{ max
j∈Jobs

Fj} (1)

flowtime = min
S∈Sched

{
∑

j∈Jobs

Fj} (2)

where Sched is the set of all possible schedules, Jobs stands

for the set of all jobs to be scheduled, and Fj represents the

time in which job j finalizes.

Minimizing makespan aims to execute the whole meta-

task as fast as possible while minimizing flowtime aims to

utilize the computing environment efficiently.

A schedule of n independent tasks executed on m ma-

chines can be naturally expressed as a string of n integers

S = (s1, s2, . . . , sn) that are subject to si ∈ 1, . . . ,m.

The value at i-the position in S represents the machine on

which is the i-the job scheduled in schedule S. This schedule

encoding was used for the GA. The DE uses for problem

encoding real vectors so real coordinates must be used

instead of discrete machine numbers. The real-encoded DE

vector is in this work translated to schedule representation by

simple truncation of its coordinates (e.g. 3.6 → 3, 1.2 → 1).

Assume schedule S from the set of all possible schedules

Sched. For the purpose of differential evolution, we define

a fitness function f(S) : Sched → R that evaluates each

schedule:

f(S) = λ ·makespan(S) + (1− λ) ·
flowtime(S)

m
(3)

The function f(S) is a sum of two objectives, the makespan

of schedule S and flowtime of schedule S divided by number

of machines m to keep both objectives in approximately the

same magnitude. The influence of makespan and flowtime in

f(S) is parameterized by the variable λ. The same schedule

evaluation was already used several times, see e.g. [25], [26].

B. Experiments

To evaluate the performance of the GA and DE for

minimizing the makespan and flowtime, we have used the

benchmark proposed in [18]. The simulation model is based

on the ETC matrix for 512 jobs and 16 machines. The

instances of the benchmark are classified into 12 different

types of ETC matrices according to [18]:

• task heterogeneity, i.e. the amount of variance among

the execution times of tasks for a given machine

• machine heterogeneity, i.e. the variation among the

execution times for a given task across all the machines

• consistency. An ETC matrix is said to be consistent

whenever a machine Mj executes any task Ti faster

than machine Mk; in this case, machine Mj executes

all tasks faster than machine Mk

2011 Third World Congress on Nature and Biologically Inspired Computing 519

Table I: GA and DE settings

GA DE
paremeter value parameter value

population size 64 population size 64

mut. probability 0.01 F 0.9

cros. probability 0.8 C 0.9

selection semi elitary

Table II: Optimization results

ETC matrix GA DE

ThMhCc 2.34994e+07 9.55294e+06
ThMhCi 1.38284e+07 3.17031e+06
ThMhCs 1.45571e+07 4.28296e+06

ThMlCc 207687 189457
ThMlCi 182313 78844.7
ThMlCs 171689 104447

TlMhCc 755855 331510
TlMhCi 468615 104894
TlMhCs 493757 142368

TlMlCc 6834.15 6158.24
TlMlCi 5731.92 2550.79
TlMlCs 5873.45 3391.38

• inconsistency – machine Mj may be faster than ma-

chine Mk for some tasks and slower for others

GA and DE to solve the independent task scheduling

problem were implemented as outlined in section IV with (3)

with T = 0.5 as fitness function. The goal of the algorithm

was to minimize the fitness. The parameters of GA and DE

set on the basis of previous experience and after initial

tuning are shown in Table I. The run of each algorithm

was terminated after exactly one minute. The experiment

was performed on a server with 2 dual core AMD Opteron

processors at 2.6GHz and nVidia Tesla C2050 with 448

cores at 1.15GHz.

The average final fitness obtained for each ETC matrix by

the GA and DE is shown in Table II. We can clearly see that

the DE was able to find significantly better schedules within

the given minute. The differencies between final fitness for

the DE and GA are also illustrated in Fig. 3. Indeed this is an

interesting results that can be attributed to several reasons:

• the DE is a meta-heuristic that solves the independent

task scheduling problem better than the GA. The no free

lunch theorem [27] explains why some algorithms are

better at solving certain problems and wors at solving

another problems.

• the many-threaded implementation suits better to the

DE than GA. However, we note that more GA opera-

tions have been performed on the CPU because their

parallelization was impractical(e.g. the parent selec-

tion).

Figure 3: The flowchart of the GA implementation on

CUDA.

VI. CONCLUSIONS

In this paper, we have compared a many-threaded imple-

mentation of two nature inspired meta-heuristics, the GA

and the DE. In contrast to previous GPU implementations

of the GA and DE, the presented implementation processes

each candidate solution with many threads and generates the

random numbers on the GPU. This approach seeks to utilize

the resources of the GPGPU as much as possible.

The CUDA implementation of the DE was easier because

the variant of the algorithm that was implemented can be

almost entirely expressed using matrix vector operations.

The parallelization of the GA was not so straightforward

because some parts of the algorithm (parent selection,

transition from one population to another) are not suitable

for parallelization in a SIMD environment such as the

CUDA. We have performed a direct comparison of the two

algorithms on the same problem and the DE was clear

winner in terms of finding better schedules than the GA.

In the future, we will study whether the many-threaded GA

implementation performs poorly also on other problems,

which would mean that either our parallel model or its

implementation is unsatisfactory.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Industry

and Trade of the Czech Republic, under the grant no. FR-

TI1/420.

REFERENCES

[1] G. Hager, T. Zeiser, and G. Wellein, “Data access opti-
mizations for highly threaded multi-core cpus with multiple
memory controllers,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pp. 1
–7, 2008.

[2] T. J. Desell, D. P. Anderson, M. Magdon-Ismail, H. J.
Newberg, B. K. Szymanski, and C. A. Varela, “An analysis
of massively distributed evolutionary algorithms,” in IEEE
Congress on Evolutionary Computation, pp. 1–8, IEEE, 2010.

520 2011 Third World Congress on Nature and Biologically Inspired Computing

[3] O. Maitre, L. A. Baumes, N. Lachiche, A. Corma, and P. Col-
let, “Coarse grain parallelization of evolutionary algorithms
on GPGPU cards with EASEA,” in GECCO ’09: Proceedings
of the 11th Annual conference on Genetic and evolutionary
computation, (New York, NY, USA), pp. 1403–1410, ACM,
2009.

[4] S. Tsutsui and N. Fujimoto, “Solving quadratic assignment
problems by genetic algorithms with gpu computation: a case
study,” in GECCO ’09: Proceedings of the 11th annual con-
ference companion on Genetic and evolutionary computation
conference, (New York, NY, USA), pp. 2523–2530, ACM,
2009.

[5] M. L. Wong, “Parallel multi-objective evolutionary algo-
rithms on graphics processing units,” in GECCO (Compan-
ion) (F. Rothlauf, ed.), pp. 2515–2522, ACM, 2009.

[6] D. Robilliard, V. Marion, and C. Fonlupt, “High performance
genetic programming on gpu,” in Proceedings of the 2009
workshop on Bio-inspired algorithms for distributed systems,
BADS ’09, (New York, NY, USA), pp. 85–94, ACM, 2009.

[7] W. Langdon and W. Banzhaf, “A simd interpreter for genetic
programming on gpu graphics cards,” in Genetic Program-
ming (M. O’Neill, L. Vanneschi, S. Gustafson, A. Espar-
cia Alcázar, I. De Falco, A. Della Cioppa, and E. Tarantino,
eds.), vol. 4971 of Lecture Notes in Computer Science,
pp. 73–85, Springer Berlin / Heidelberg, 2008.

[8] W. Zhu, “Massively parallel differential evolution - pat-
tern search optimization with graphics hardware acceler-
ation: an investigation on bound constrained optimization
problems,” Journal of Global Optimization, pp. 1–21, 2010.
10.1007/s10898-010-9590-0.

[9] L. de Veronese and R. Krohling, “Differential evolution algo-
rithm on the gpu with c-cuda,” in Evolutionary Computation
(CEC), 2010 IEEE Congress on, pp. 1 –7, 2010.

[10] W. Zhu and Y. Li, “Gpu-accelerated differential evolutionary
markov chain monte carlo method for multi-objective opti-
mization over continuous space,” in Proceeding of the 2nd
workshop on Bio-inspired algorithms for distributed systems,
BADS ’10, (New York, NY, USA), pp. 1–8, ACM, 2010.

[11] M. Mitchell, An Introduction to Genetic Algorithms. Cam-
bridge, MA: MIT Press, 1996.

[12] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential
Evolution A Practical Approach to Global Optimization.
Natural Computing Series, Berlin, Germany: Springer-Verlag,
2005.

[13] T. Wong and M. Wong, “Parallel evolutionary algorithms
on Consumer-Level graphics processing unit,” in Parallel
Evolutionary Computations, pp. 133–155, Springer, 2006.

[14] M. Wong and T. Wong, “Implementation of parallel genetic
algorithms on graphics processing units,” in Intelligent and
Evolutionary Systems, pp. 197–216, ACM, 2009.

[15] Q. Yu, C. Chen, and Z. Pan, “Parallel genetic algorithms on
programmable graphics hardware,” in ICNC (3) (L. Wang,
K. C. 0001, and Y.-S. Ong, eds.), vol. 3612 of Lecture Notes
in Computer Science, pp. 1051–1059, Springer, 2005.

[16] NVIDIA, NVIDIA CUDA Programming Guide 3.2. 2010.

[17] S. Ali, T. Braun, H. Siegel, and A. Maciejewski, “Heteroge-
neous computing,” in Encyclopedia of Distributed Computing
(J. Urbana and P. Dasgupta, eds.), Kluwer Academic Publish-
ers, Norwell, MA, 2002.

[18] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Mah-
eswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao,
D. Hensgen, and R. F. Freund, “A comparison of eleven
static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems,” J. Parallel
Distrib. Comput., vol. 61, pp. 810–837, June 2001.

[19] D. Fernandez-Baca, “Allocating modules to processors in a
distributed system,” IEEE Trans. Softw. Eng., vol. 15, no. 11,
pp. 1427–1436, 1989.

[20] E. Munir, J.-Z. Li, S.-F. Shi, and Q. Rasool, “Performance
analysis of task scheduling heuristics in grid,” in Machine
Learning and Cybernetics, 2007 International Conference on,
vol. 6, pp. 3093–3098, aug. 2007.

[21] H. Izakian, A. Abraham, and V. Snasel, “Comparison of
heuristics for scheduling independent tasks on heterogeneous
distributed environments,” in Computational Sciences and
Optimization, 2009. CSO 2009. International Joint Confer-
ence on, vol. 1, pp. 8 –12, april 2009.

[22] G. Ritchie and J. Levine, “A hybrid ant algorithm for schedul-
ing independent jobs in heterogeneous computing environ-
ments,” in Proceedings of the 23rd Workshop of the UK
Planning and Scheduling Special Interest Group, December
2004.

[23] A. YarKhan and J. Dongarra, “Experiments with scheduling
using simulated annealing in a grid environment,” in GRID
’02: Proceedings of the Third International Workshop on Grid
Computing, (London, UK), pp. 232–242, Springer-Verlag,
2002.

[24] A. J. Page and T. J. Naughton, “Framework for task schedul-
ing in heterogeneous distributed computing using genetic
algorithms,” Artificial Intelligence Review, vol. 24, pp. 137–
146, 2004.

[25] J. Carretero, F. Xhafa, and A. Abraham, “Genetic algorithm
based schedulers for grid computing systems,” International
Journal of Innovative Computing, Information and Control,
vol. 3, no. 7, 2007.

[26] P. Kromer, V. Snasel, J. Platos, A. Abraham, and H. Ezakian,
“Evolving schedules of independent tasks by differential evo-
lution,” in Intelligent Networking, Collaborative Systems and
Applications (S. Caballé, F. Xhafa, and A. Abraham, eds.),
vol. 329 of Studies in Computational Intelligence, pp. 79–94,
Springer Berlin / Heidelberg, 2011.

[27] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” Evolutionary Computation, IEEE Transac-
tions on, vol. 1, pp. 67–82, August 2002.

2011 Third World Congress on Nature and Biologically Inspired Computing 521

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

