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This paper presents two techniques for DC model parameter extraction for a Gallium Arsenide (GaAs)
based MEtal Semiconductor Field Effect Transistor (MESFET) device. The proposed methods uses Particle
Swarm Optimization (PSO) and Quantum Particle Swarm Optimization (QPSO) methods for optimizing
the difference between measured data and simulated data. Simulated data are obtained by using four dif-
ferent popular DC models. These techniques avoid complex computational steps involved in traditional
parameter extraction techniques. The performance comparison in terms of quality of solution and execu-
tion time of classical PSO and QPSO to extract the model parameters are presented. The validity of this
approach is verified by comparing the simulated and measured results of a fabricated GaAs MESFET
device with gate length of 0.7 lm and gate width of 600 lm (4 � 150). Simulation results indicate that
both the technique based on PSO and QPSO accurately extracts the model parameters of MESFET.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Device simulation is one of the important steps for Integrated
Circuit fabrication, verification and characterization. Each semi-
conductor device have models that satisfies the behavior of the de-
vice under different operating conditions. GaAs MESFET is a
promising semiconductor device used in many applications in
the microwave domain. Many models of GaAs MESFET device are
reported in the literature [1–5]. Each model has a unique set of
parameters that describes the underlying physical phenomena of
the device. These parameters are obtained by minimizing the dif-
ference between measured drain current and modeled drain cur-
rent at different gate bias voltage. This process is known as
parameter extraction. Usually the model parameters are extracted
using commercial software like HP IC-CAP [6], Silvaco UTMOST [7],
TMA AURORA [8], etc. Parameter extraction is an crucial and diffi-
cult step for the circuit and device simulator. Until recent past, the
model parameter extraction were carried out by using standard
gradient based algorithm or Levenberg Marquardt (LM) algorithm
[9]. LM algorithm is sensitive to initial values of parameters and
is thus proned to be trapped in local minima. The complexity of
the model lead the extraction algorithm to take longer computa-
tion time for resulting the solution. The traditional algorithm is
not an ideal approach if more parameters need to be extracted
ll rights reserved.
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from a complex model at a time. The major drawbacks of this ap-
proach is its poor convergence rate and non-optimal solutions.
Non-optimal solutions are due to trap of algorithmic solutions in
local optima. To overcome these drawbacks, genetic algorithm
(GA) is being used in parameter extraction of semiconductor device
model [10]. The advantages of using GA is that its solutions are
independent on initial values of the parameters and it provides
an optimal set of solution by avoiding local non-optimal solutions.
The major drawbacks of GA based approach are that it involves
more algorithmic steps and it provides inconsistent results in dif-
ferent simulation environment.

To overcome this problem, we have proposed two techniques
namely PSO and QPSO algorithm for model parameter extraction.
The PSO algorithm was first introduced by Kennedy and Eberhart
in 1995 [11]. Many variants of PSO algorithm were developed by
the authors [12–14] to improve the quality of solution. In recent
past, PSO is being used for solving complex optimization problems
[15–17]. The authors have also applied PSO algorithm for extracting
small signal model parameters of MESFET [18]. The popularity of
this algorithm is due to its simple form, easy implementation steps
and ability to avoid local minima. The basic PSO still suffers the poor
convergence rate. In this paper, a new variant of PSO known as delta
potential well quantum PSO (DQPSO) based on quantum mechanics
is used to extract different DC model parameters of a fabricated
MESFET device. QPSO algorithm has proven to have advantages
than the classical PSO due its less control parameters [19,20]. In re-
cent past, DQPSO is used to solve real world complex problems
[21,22]. More details about QPSO algorithm is presented in
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Section 5. The performance comparison of both classical PSO and
QPSO algorithm for model parameter extraction is presented. In this
paper, all the simulation are carried out for a single geometry device
structure. The methodology proposed in this paper is to optimize
the error between measured and simulated data using PSO and
DQPSO algorithms. The simulated data were obtained using differ-
ent popular device models [2–5].

The rest of paper is organized as follows: Section 2 provides a
brief description of the model parameter extraction strategies. Sec-
tion 3 presents the problem formulation for parameter extraction
and a brief description about classical PSO algorithm is provided
in Section 4. Section 5 presents the description about Quantum
Particle Swarm Optimization followed by simulation and results
in Section 6. Conclusions are drawn in Section 7.

2. Model parameter extraction

The accuracy of a commercial available software used for device
simulation depends on the accuracy of the device models and the
parameter extraction algorithm being used in the software. A model
is accurate if it fits the measured data in all the operating regions of
the characteristics curve. In order to closely resemble between model
data and measured data, more numbers of parameters are included in
the model to describe the behavior of device accurately. The inclusion
of more number of parameters in the model results in a complex
model and eventually parameter extraction algorithm becomes more
complex. As the number of parameters in a model increases, the con-
ventional parameter extraction algorithm fails to provide accurate
values. So an efficient parameter extraction algorithm is always in
demand for fabrication industry. The efficiency of the algorithm
depends on the quality of solutions and convergence time.

Two strategies are often used in parameter extraction domain.
One is local optimization in which each parameter is extracted
from certain region of the characteristics curve. This can be inter-
preted as, local optimization strategy is region specific. The disad-
vantages of this technique are the mismatch between simulated
and measured data and the designer must have domain knowledge
to use this strategy. The second strategy is to adopt a global opti-
mization technique. In this technique, the wide set of parameters
are extracted from a wide range of measured data and is not region
specific. The designer only needs to give a range of values of the
variables to be determined. This input helps the algorithm to avoid
non-physical solutions. In this paper, a new variant of PSO based
on quantum mechanics is used to extract the model parameters
of the MESFET model.
3. Formulation of parameter extraction problem

The main objective of DC model parameter extraction problem is
to minimize the difference between measured and simulated drain
current Id at various drain source Vds and gate source Vgs voltage of
MESFET. It can be formulated using an objective function. In this pa-
per, the objective function is the square of the difference between
the measured drain current and the simulated drain current. The
choice of objective function affects the numerical efficiency of the
algorithm. In this paper, for obtaining the simulated data, four dif-
ferent MESFET DC models are considered such as TOM3 model, Taj-
ima Model, Materka–Kacprzak Model and Curtice–Ettenburg model
[1]. Mathematically the objective function can be represented as

E ¼
XP

Vgs¼1

EVgs ð1Þ

EVgs ¼
XK

Vds¼1

ðIsim;Vds ;Vgs � Imeas;Vds ;Vgs Þ
2 ð2Þ
where P is the number of gate bias voltage ðVgsÞ and Isim;Vds ;Vgs is sim-
ulated drain current at drain bias voltage Vds and gate bias voltage
Vgs. Imeas;Vds ;Vgs is the corresponding measured drain current value at
drain bias voltage Vds and gate bias voltage Vgs. Let us consider the
simulated model as Tajima model [2]. In case of Tajima model the
drain current is given by

IdsðVds;VgsÞ ¼ Id1:Id2 ð3Þ
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where k ¼ 1� 1
m f1� expð�mÞg; �Vgs ¼ Vgs � V/ and Vp ¼ Vp0þ

pVds þ V/. Where V/ is the built in potential for the schottky barrier,
Vp0 is the pinch-off voltage at Vds � 0 V. a,b,m and p are the fitting
parameters. Vdss is the drain current saturation voltage and Idsp is
the drain current at Vp0 ¼ V/. The parameter extraction problem
is formulated as

minimizeðf Þ ¼
XP

Vgs¼1

EVg s ð6Þ

From Eq. (2) the objective function can be expressed as:

f ¼
X
Vgs

X
Vds

ðImeas;Vds ;Vgs � Isim;Vds ;Vgs Þ
Imeas;Vds ;Vgs

2
24 351=2

ð7Þ

Objective function is a function that needs to be optimized for
extracting different parameters. If the number of parameters to
be extracted in the model increases, minimizing Eq. (7) using tra-
ditional optimization technique becomes computational intensive.
A simple PSO and QPSO algorithms are proposed in this paper and
used to minimize Eq. (7) for extracting the model parameters of
different MESFET models. Careful selection of the proper range of
parameters to be optimized are considered to avoid the danger
of blind optimization. The model parameters need to be optimized
are model dependent. The algorithmic parameters of PSO and
QPSO are considered same for the considered device models [2–5].
4. Classical Particle Swarm Optimization Algorithm

PSO algorithm is a stochastic and robust optimization algorithm
based on intelligence and movements of birds in the Swarm [11]. It
has been applied to many real world optimization problems suc-
cessfully [15–18]. In the PSO domain, each bird is termed as a sin-
gle particle. Each particles position are potential solution of the
optimization problem. The number of variables to be optimized de-
cides the number of dimensions of the optimization problem. Each
particle is associated with two numbers of variables known as po-
sition and velocity. To find the optimal solution, a Swarm of Parti-
cles are initialized with a random position and velocity within a
defined range. Positions are initialized within a range defined by
Xmax and Xmin. Velocity is initialized between 0 to Vmax, where
Vmax is fXmax � Xming=2. Each particle adjusts its ‘‘flying trajectory”
according to its own best position (pbest) as well as the swarm’s
best position (gbest). Each particle’s strength in the search process
is evaluated based on the fitness value of the particle. While in the
search process each particle updates their pbest in the following
way. Each particle remembers its previous solution, and if the cur-
rent solution is better than the previous solution, the position cor-
responding to current solution becomes the pbest, otherwise the
position corresponds to the previous solution is the pbest. The best



662 S.L. Sabat et al. / Microelectronics Reliability 49 (2009) 660–666
among the pbest solution is the gbest solution and the position cor-
responds to gbest value are the potential solution of the problem.
This process is known as updating pbest and gbest.

The practical implementation of classical PSO involves the fol-
lowing steps.

1. Initialization of algorithmic parameters: In this step, initializa-
tion of the number of dimension along with the range, number
of particles along with position and velocity in the Swarm is
defined. For a D-dimensional problem with N number of parti-
cles the position vector is represented as XðtÞ ¼ ðX1ðtÞ;
X2ðtÞ;X3ðtÞ; . . . ;XNðtÞÞ where Xi ¼ ðxi1; xi2; xi3; . . . ; xiDÞ and the
velocity vector is represented as VðtÞ ¼ ðV1ðtÞ;V2ðtÞ;V3ðtÞ; . . . ;

VNðtÞÞ;where Vi ¼ ðv i1;v i2;v i3; . . . ;v iDÞ.
2. Evaluate the desired objective function of each particle: In this

step, objective function for each particle is evaluated.
3. Update pbest: In this step, each particles current fitness value is

compared with previous best value pbest. If the current value is
better than the pbest value, then set the pbest value to the cur-
rent value.

4. Update gbest: In this step, determine the swarm best gbest as
minimum of all the particles pbest.

5. Update the velocity and position of each particle: In this step
velocity and position of each particle is updated as

v tþ1
i;d ¼ v t

i;d þ ct
1 � rand1 � ðpbestt

i;d � xt
i;dÞ

þ ct
2 � rand2 � ðgbestt

d � xt
i;dÞ ð8Þ

xtþ1
i;d ¼ xt

i;d þ v tþ1
i;d ð9Þ

where c1 and c2 are the learning factors that determines the rel-
ative influence of cognitive and social component, respectively,
in search space. In this paper, the values of c1 and c2 were de-
creased (adapted) with each iteration [11]. rand1 and rand2 are
random numbers within the range [0,1]. v t

i;d; x
t
i;d and pbestt

i;d

are the velocity, position and the personal best of ith particle
in dth dimension for the tth iteration respectively. The gbestt

d

is the dth dimension of best particle in the swarm for the tth
iteration.

6. Terminate: In this step, the algorithm checks for stopping
criteria, if it satisfies the criteria, then the algorithm terminates.

5. Quantum Particle Swarm Optimization

In the classical PSO, the particle moves in the search space by
following Newtonian dynamics. Although classical PSO converges
to the global solution, still for some problems it is not a global opti-
mization technique, since it gets trapped in local minima. Classical
PSO has many control parameters. The convergence of the algo-
rithm depends on the value of the control parameters. Tuning a
proper value for convergence of PSO algorithm is a tedious work.
To avoid this problem a new PSO, which has only one control
parameter and in which the movement of particles are inspired
by the quantum mechanics [21,22] is proposed for extracting the
model parameters of MESFET. Since the particles behavior follows
the quantum mechanics principle, the PSO is termed as Quantum
PSO (QPSO). In quantum mechanics the state of each particle is
determined by a wave function wj;kðtÞ and is associated with the
time dependent Schrödingers equation

j�h
@

@t
wðr; tÞ ¼ bHðrÞwðr; tÞ ð10Þ

where bH is the time-independent Hamiltonian operator of the
quantum system given by
bHðr; tÞ ¼ � �h2

2m
r2 þ VðrÞ ð11Þ

where �h is the Planck’s constant and m is mass of the particle.V(r) is
the potential energy of the distribution. The solution of Eq. (10)
wðr; tÞ gives the state of the particle in the system.

The choice of potential well plays an important role in QPSO.
The necessary condition for choosing the potential well is the po-
tential field of the potential well should give bound states for the
particles moving in quantum states. Most popular potential well
that satisfies this condition are delta potential well, harmonic
oscillator potential well and square potential well. If the particles
are in delta potential well then the corresponding QPSO algorithm
is termed as delta well quantum PSO (DQPSO). Similarly if the par-
ticles are in harmonic oscillator well and square potential well the
corresponding PSO are termed as harmonic oscillator QPSO
(HQPSO) and square QPSO (SQPSO), respectively. In this paper,
we used the delta well quantum PSO to extract DC model param-
eters of MESFET.

5.1. Delta Well Quantum Particle Swarm Optimization (DQPSO)

In DQPSO each particle move in the search space within a delta
potential on each dimension with center at pi;j. Index i and j are for
particle i of jth dimension. The probability density function Q of
particle xi;j can be expressed as [22]

Qðxi;jðt þ 1ÞÞ ¼ 1
Li;jðtÞ

exp�
jpi;jðtÞ � xi;jðt þ 1Þj

Li;jðtÞ
ð12Þ

where Li;jðtÞ is characteristic length of potential well. By solving Eq.
(12) using Monte-carlo technique the position of particle is ob-
tained as

xi;jðt þ 1Þ ¼ pi;jðtÞ �
Li;jðtÞ

2
ln

1
u

ð13Þ

where u is a random number in the range [0,1]. Using the idea of
center of mass position, the mean best position of all the particles
can be defined as

mðtÞ ¼ ðm1ðtÞ;m2ðtÞ; . . . ;mDðtÞÞ

¼ 1
N

XN

i¼1

pi;1ðtÞ;
1
N

XN

i¼1

pi;2ðtÞ; . . . ;
1
N

XN

i¼1

pi;DðtÞ
 !

ð14Þ

where N is the population size. pbesti;j is the best position of ith
particle in jth dimension. The value of Li;jðtÞ can be determined
by

Li;jðtÞ ¼ 2ajxi;jðtÞ �mjðtÞj ð15Þ

where a is contraction–expansion constant. Eq. (13) can be ex-
pressed as

xi;jðt þ 1Þ ¼ pi;jðtÞ � a � jxi;jðtÞ �mjðtÞjln
1
u

ð16Þ

where mj is the mean best of all the particles in jth dimension. This
equation is implemented using Monte-carlo technique as

xi;jðt þ 1Þ ¼ pi;jðtÞ þ a � jxi;jðtÞ �mjðtÞjln
1
u

if k > 0:5 ð17Þ

xi;jðt þ 1Þ ¼ pi;jðtÞ � a � jxi;jðtÞ �mjðtÞjln
1
u

if k < 0:5 ð18Þ

where k is a random number in the range [0,1]. In this paper, a is
linearly decreasing factor from 1.0 to 0.3 with iteration as

at ¼ amax �
amax � amin

tmax
� t ð19Þ



Table 2
List of extracted parameters using PSO algorithm.

Model name Parameters Min Max Mean Std deviation

Materka [2] IDSS 0.1 0.1 0.1 0.00
Vt0 �1.93 �1.83 �1.89 0.02
a 3.16 5.43 4.02 0.77
c �0.14 �0.12 �0.13 0.01

Tajima [3] VBI 0.03 2.77 0.41 0.65
VP0 �2.61 1.99 1.60 1.08
P 0.0 0.18 0.09 0.03
m �2.98 1.47 0.46 0.95
Idsp 0.01 0.19 0.12 0.03
VDSS 0.85 1.49 1.08 0.16
a 0.08 3.89 2.89 0.83
b �0.28 0.86 0.41 0.29

TOM3 [4] a 2.09 3.22 2.57 0.31
b 0.02 0.04 0.03 0.01
k 0.0 0.01 0.0 0.00
c 0.01 0.02 0.01 0.00
Vto �2.42 �1.91 �2.13 0.14
Msto 0.08 0.19 0.14 0.03
Q 1.53 2.01 1.75 0.14
Vsto 0.03 0.07 0.05 0.01

CE [5] b 0.03 0.07 0.04 0.01
A0 0.1 0.1 0.1 0.00
A1 0.07 0.11 0.09 0.01
A2 �0.04 0.08 0.03 0.02
A3 �0.05 0.04 0.01 0.02
c 1.43 2.76 1.99 0.32
Vds0 0.12 4.34 2.18 1.18

Table 3
List of extracted parameters using DQPSO algorithm.

Model name Parameters Min Max Mean Std deviation

Materka [2] IDSS 0.1 0.1 0.1 0.00
Vt0 �1.94 �0.37 �1.81 0.3
a 3.12 5.84 4.26 0.64
c �0.53 �0.11 �0.15 0.08

Tajima [3] VBI 0.01 0.97 0.31 0.27
VP0 1.71 2.0 1.89 0.08
P 0.06 0.14 0.1 0.02
m �0.72 1.36 0.47 0.54
Idsp 0.1 0.2 0.13 0.03
VDSS 0.8 1.55 1.07 0.22
a 1.23 4.0 2.91 0.8
b �0.6 0.97 0.31 0.42

TOM3 [4] a 2.04 3.49 2.8 0.3
b 0.01 0.04 0.02 0.01
k 0.0 0.06 0.01 0.01
c 0.01 0.04 0.01 0.01
Vto �2.45 �1.87 �2.17 0.14
Msto 0.09 0.2 0.14 0.03
Q 1.53 2.43 1.82 0.18
Vsto 0.03 0.08 0.05 0.01

CE [5] b �0.01 0.05 0.03 0.02
A0 0.1 0.12 0.1 0.00
A1 0.05 0.17 0.09 0.02
A2 �0.04 0.14 0.02 0.04
A3 �0.05 0.04 0.01 0.02
c 1.49 2.86 2.02 0.29
Vds0 0.33 4.84 2.24 1.12

S.L. Sabat et al. / Microelectronics Reliability 49 (2009) 660–666 663
where tmax is the maximum number iteration used in algorithm. The
practical implementation of DQPSO involves the following steps.

1. Initialization of algorithmic parameters: In this step initializa-
tion of the number of dimension along with the range, number
of particles along with position in the swarm is defined. For a D-
dimensional problem with N number of particles the position
vector is represented as XðtÞ ¼ ðX1ðtÞ;X2ðtÞ;X3ðtÞ; . . . ;XNðtÞÞ
where Xi ¼ ðxi1; xi2; xi3; . . . ; xiDÞ.

2. Evaluate m and a, of Swarm using Eqs. (14) and (19),
respectively.

3. Evaluate the desired objective function of each particle: In this
step, the objective function for each particle is evaluated.

4. Update pbest: Each particles current fitness value is compared
with previous best value pbest. If the current value is better than
the pbest value, then set the pbest value to the current value.

5. Update gbest: Determine the swarm best gbest as minimum of
all the particles pbest.

6. Evaluate the coordinate of local attractor for each particle in
each dimension

pi;jðtÞ ¼
rand1 � pbesti;jðtÞ þ rand2 � gbestjðtÞ

rand1 þ rand2
ð20Þ

7. Update the position of particle as Eqs. (17) and (18).
8. Repeat steps 2–7 until the stop criteria is satisfied.
9. Terminate: The algorithm checks for stopping criteria, if it sat-

isfies the criteria, then the algorithm terminates.

6. Experimental results and analysis

All experiments were conducted in a Windows XP Professional,
OS environment using a Pentium IV, 2.0 GHz, 2GB RAM and the
codes were implemented in Matlab.

6.1. Parameter settings

Different Models of same dimension MESFET of gate width
W = 600 lm (4 � 150) and gate length L = 0.7 lm are simulated
for 50 times using the proposed techniques. Simulations are car-
ried out with a population size (N) of 20, the number of iterations
(Max.Gen) 1000. The dimensions of the problem is model depen-
dent. The algorithm is tested on different MESFET models and com-
pared with measured data from the specified MESFET. The model
parameters of different models [2–5] for 0.7 lm technology GaAs
MESFET are extracted using PSO and DQPSO technique. Algorith-
mic parameters of PSO and DQPSO are tabulated in Table 1. The
values of the extracted parameters for the four different models
using classical PSO and Quantum PSO are presented in Tables 2
and 3. Each model has different set of model parameters that are
extracted from the measured drain current values. The mean
square error (MSE) between the measured and simulated drain
current has been calculated for each model using PSO and DQPSO
technique and are presented in Table 4. In both the PSO and DQPSO
algorithms, the set of parameters need to be extracted are initial-
ized with random values within a predefined range. Predefined
range of values are used to avoid non-physical solutions. The ex-
Table 1
Algorithmic parameters of PSO and DQPSO.

Algorithmic parameter PSO DQPSO

No. of particle 20 20
Max. iteration 1000 1000
c1; c2 Varies with iteration —
a – Varies with iteration
tracted values for different models using PSO and DQPSO for 50 dif-
ferent runs are presented in Tables 2 and 3. Although both methods
provided good solutions, the computation time per iteration in PSO
algorithm is much smaller compared to DQPSO method. The
advantages of using DQPSO is that it has only one tuning parameter.
The computation time per iteration varies from model to model
and is tabulated in Table 4. In Table 4, TPSO and TDQPSO defines the



Table 4
Performance comparison between PSO and DQPSO.

Model name PSO MSE DQPSO MSE TPSO (s) TDQPSO (s) No. of parameters

Materka [2] 0.000031 0.00091 0.0069 19.49 4
Tajima [3] 0.0018 0.0013 0.0155 48.94 8
TOM3 [4] 0.246 0.0122 0.0055 37.3219 8
Curtice and Ettenberg (CE) [5] 0.0003 0.122 0.0043 28.1609 7
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computation time per iteration using PSO and DQPSO technique,
respectively. Figs. 1–4 illustrate the output characteristics of the
fabricated MESFET. The solid line represents the simulated data
and the doted line represents the measured data using proposed
methods. Fig. 5 shows the characteristics of LogðIdsÞ vs. Vgs of the
MESFET for TOM3 model. For Vgs � Vthreshold the model fails to
model the drain current accurately. Figs. 6–8 shows the derivative
of drain current with respect to different lead voltages using pro-
posed parameter extraction technique and TOM3 model. From Figs.
1–8, it is clear that the proposed parameter extraction algorithm is
able to accurately extracts the model parameters of the device. The
PSO and DQPSO provides almost same results and the PSO approach
gives less mean square error compared to DQPSO. The performance
illustration is shown only for PSO. A comprehensive verification is
carried out on different popular MESFET models [1–5].

For PSO algorithm c1 and c2 varies with iteration t as follows:

ct
1 ¼ c1max þ

c1max � c1min

Max:iter
� ðMax:iter � tÞ ð21Þ

and similarly
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points 1 V (red), 1.5 V (green) and 2 V (blue) using TOM3 model. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. Simulated (—) and measured ð� � �Þ @ðIdsÞ=@ðVdsÞ vs. Vds of MESFET for TOM3
model.
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ct
2 ¼ c2max þ

c2max � c2 min

Max:iter
� ðMax:iter � tÞ ð22Þ

where Max.iter is the maximum number of iteration used in simula-
tion. c1max and c2max are same as 0.9 and c1min and c2min are same as 0.2.

7. Conclusion

In his paper, the extraction of model parameters of four differ-
ent models using PSO and DQPSO has been investigated. The per-
formance comparison of both the algorithms are carried out for
different models. Empirical results indicate that PSO and DQPSO
algorithms are efficient optimization techniques for model param-
eter extraction. However DQPSO technique required more compu-
tational time compared to the classical PSO algorithm. The
proposed technique does not require any expert knowledge in
MESFET device and are not sensitive to initial value of the param-
eters for extracting the model parameter values. The accuracy of
the developed technique is verified in terms of the DC characteris-
tic simulation and measured data of a GaAs MESFET device. Mater-
ka model and TOM3 model are the suitable model for the
fabricated MESFET. The proposed method can be interfaced to
commercial tools such as IC-CAP for extracting the different
parameters of semiconductor device.
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