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ABSTRACT. Differential evolution (DE) is a powerful yet simple evolutionary algorithm
for optimizing real valued optimization problems. Traditional investigations with DE
have used a single mutation operator. Using a variety of mutation operators that can
be integrated during evolution could hold the potential to generate a better solution with
less computational effort. In view of this, in the present study, a mized mutation strat-
egy which uses the concept of evolutionary game theory is proposed integrating the basic
differential evolution mutation and quadratic interpolation based mutation to generate
a new solution. Throughout of this paper, we refer this new algorithm as Mized Strat-
egy Differential Evolution (MSDE). The performance of proposed MSDE is investigated
and compared with basic differential evolution and some other modified versions of DE

available in literature. The experiments conducted show the competence of the proposed
MSDE algorithm.
Keywords: Differential evolution, Mutation operator, Pure strategy, Mixed strategy

1. Introduction. In the past few decades, Evolutionary Algorithms (EAs) have become
the center of attention for solving complex global optimization problems which are oth-
erwise difficult to solve by traditional methods. These algorithms have been successfully
applied to a wide range of single and multi-objective optimization problems [1-4].

Some common EAs available in literature include Genetic Algorithms [5], Evolutionary
Strategies [6], Evolutionary Programming [7], Particle Swarm Optimization [8], Differen-
tial Evolution [9], etc.

In the present study, we focus on DE, proposed by Storn and Price in 1995 [9], which
is relatively a new addition to the class of EAs. Within a short span of around fifteen
years, DE has emerged as one of the most popular techniques for solving optimization
problems. DE has been successfully applied to solve a wide range of real life application
problems arising in the field of science and engineering. Some of the areas where DE
has been applied successfully include aerodynamic shape optimization [10], optimization
of radial active magnetic bearings [11], automated mirror design [12], optimization of
fermentation by using high ethanol tolerance yeast [13], clustering [14], neural network
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[15], unsupervised image classification [16], digital filter design [17], optimization of non-
linear functions [18], global optimization of non-linear chemical engineering processes [19]
and multi-objective optimization [20], etc. Also, it has reportedly outperformed other
optimization techniques [21-23].

Despite several positive features, it has been observed that DE sometimes does not
perform as good as the expectations. Some of the drawbacks of DE are premature con-
vergence which causes the entire population to converge to a point which may not even
be a local minimum. Secondly, there may be a problem of stagnation in the population.
In this situation, the population stops proceeding towards the global optimum though it
allows new individuals to enter the population [24]. Moreover, like other population based
search techniques, the performance of DE gradually deteriorates with the increase in the
number of variables. These problems become more persistent when the objective function
is multimodal in nature having several local and global optima. Several modifications
have been made in the structure of DE to improve its performance. Some interesting
modifications include: the suggestion of parameter adaption strategy for DE by Zaharie
[25], use of a self adaptive crossover rate for multiobjective optimization problems by
Abbas [26]. Omran et al. [27] introduced a self adaptive scaling factor parameter F.
Brest et al. [28] proposed a Self Adaptive Differential Evolution (SADE), which encoded
control parameters F' and C, into the individuals and evolved their values by using two
new probabilities. Das et al. [29] introduced two schemes for the scaling factor, F, in
DE. Some other recent modified versions include Opposition based DE (ODE) by Rah-
namayan et al. [30], a hybridization of DE with Neighborhood search by Yang et al.
[31], Fittest Individual refinement [FIR] method by Noman and Iba [32], Differential Evo-
lution with Preferential Crossover (DEPC) and Differential Evolution with refined local
search (DERL) by M. M. Ali [33], Trigonometric Differential Evolution (TDE) by Fan
and Lampienen [34], Differential Evolution with parent centric crossover (DEPCX) by
Pant et al. [35], Bare Bone DE or BBDE by [36], a greedy random strategy for genetic
recombination by Bergey and Ragsdale [37]. Zhang et al. suggested a new constrained
handling method for DE [38]. Many other recent developments in DE algorithm design
and application can be found in [39].

In all the above mentioned versions of DE, a single mutation operation is used. How-
ever, it is possible that a particular mutation operator may not be suitable for all types
of problems. For example, a mutation operator which gives good results in case of a
Unimodal may have difficulty in tracking the optimum of multimodal functions. For mul-
timodal functions, the mutation operator should be such that it can easily facilitate the
exploratory capacities of a DE algorithm. An obvious solution to the problem of deciding
an appropriate mutation operator which is well suited for all types functions can provide
the DE individuals not just one mutation operator but a collection of mutation operators
and manipulate them in an order to achieve the maximum benefit. This is the central
theme of the present research.

In this paper, we propose a variant of DE having more than one mutation strategy
(mixed strategy). We have borrowed the concept of mixed strategy from the classical
game theory [40,41], which consists of a set of players and a set of strategies. Each
player tries to improve its performance by selecting a strategy from the given set and the
value of the game changes accordingly. Based on this analogy, we refer to the particles
of the DE as players and the mutation operation as the strategy. The basic DE having
a single mutation operation (single strategy) is called a pure strategy DE (PSDE) and
the DE having more than one mutation operation (multiple strategies) is called mixed
strategy DE (MSDE). In the present study, we consider a set of two strategies or a set
of two mutation operations for all the members (or particles) of the population. One
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strategy is the mutation strategy of the basic DE and the other strategy is the quadratic
interpolation mutation strategy. Each particle may select any one of the two strategies
provided to it solving unconstrained global optimization problems. A detailed description
of the proposed MSDE algorithm is given in Section 3.

Here we would like to mention that a preliminary version of this paper has already been
published in conference proceedings [42]. However, in this paper, we present an elaborated
version of [42]. We have included more test functions and compared the proposed MSDE
algorithm with other recently modified versions of DE available in literature. Besides
using the common performance measures like average fitness function value, standard
deviation, number of function evaluations, CPU time, etc. for comparing the algorithms,
we have also done a rigorous non parameter statistical analysis of the numerical results.

The remainder of the paper is structured as follows. Section 2 describes the basics
Differential Evolution. Section 3 presents the proposed MSDE. Experimental setting is
given in Section 4. Benchmark problems are listed in Section 5. Section 6 provides
comparisons of MSDE with basic DE. Comparison of MSDE with other modified versions
of DE is made in Section 7. In Section 8, an analysis of applying mixed strategy to the
family of DE is made. Comparison of algorithms on real life problems is given in Section
9. Finally, the conclusions based on the present study are drawn in Section 10.

2. Differential Evolution (DE). In this section, we describe the DE/rand/1/bin scheme.
It starts with a population of NP candidate solutions: X; ¢, 7 =1,..., NP, where the in-
dex 7 denotes the i*" individual of the population and G denotes the generation to which
the population belongs. The three main operators of DE are mutation, crossover and
selection.

Mutation: The mutation operation of DE applies the vector differentials between the
existing population members for determining both the degree and direction of perturba-
tion applied to the individual subject of the mutation operation. The mutation process
at each generation begins by randomly selecting three individuals {X,, X2, X,3} in the
population set of (say) NP elements. The i*" perturbed individual, V; .1, is generated
based on the three chosen individuals as follows:

Vi1 = Xeso + F* (Xpo — Xr26) (1)

where, i =1...NP, rq,ry,r3 € {1,---, NP} are randomly selected such that r; # ry #
r3 # 4, F is the control parameter such that F' € [0, 1].
Crossover: once the mutant vector is generated, the perturbed individual, Vg1 =

(V14,G+15s - - - » Unjisa+1), and the current population member, X; ¢ = (z1,6, ", Tnic), are
then subject to the crossover operation, that finally generates the population of candi-
dates, or “trial” vectors, U; g+1 = (U1iG4+1," - » Unic+1), as follows:
Vji.G+1, if randj S OT V ] =k
UjiG+1 = (2)
Tjic otherwise
where, j =1,--+ ,n, k € {1,--- ,n} is a random parameter’s index, chosen once for each

i. The crossover rate, C,. € [0, 1], is set by the user.

Selection: The selection scheme of DE also differs from that of other EAs. The pop-
ulation for the next generation is selected from the individual in current population and
its corresponding trial vector according to the following rule:

Uict, if f(Uigr) < f(Xig)
Xi.G+1 = (3)
X;q, otherwise



5066 M. ALI, M. PANT, A. ABRAHAM AND V. SNASEL

Thus, each individual of the temporary (trial) population is compared with its coun-
terpart in the current population. The one with the lower objective function value will
survive from the tournament selection to the population of the next generation. As a
result, all the individuals of the next generation are as good as or better than their coun-
terparts in the current generation. In DE, trial vector is not compared against all the
individuals in the current generation, but only against one individual, its counterpart, in
the current generation.

2.1. Complete family of DE. Storn and Price suggested a total of 10 different strategies
of DE [43]. the general convention used to describe the type of strategy is given as
DE/X /Y /Z where DE stands for Differential Evolution, X denotes the type of vector to
be perturbed and Y denotes the number of difference vectors considered for perturbation
of X. Besides this, each strategy is combined with exponential (exp) or binary (bin) type
of crossover which is denoted as Z. These strategies are listed as follows:
(i) DE/best/1/exp (ii) DE/rand/1/exp (iii) DE/rand to best/1/exp (iv) DE/best/2/exp
(v) DE/rand/2/exp (vi) DE/best/1/bin (vii) DE/rand/1/bin (vii) DE/rand to best/1/bin
(ix) DE/best/2/bin (x) DE/rand/1/bin

In the previous section, we have described the last scheme listed here. This is perhaps
the most frequently used version of DE.

3. Proposed MSDE Algorithm. In this section, we describe the proposed modified
version, MSDE, which uses the concept of evolutionary game theory [40,41]. In MSDE
algorithm, the individuals are regarded as players in an artificial evolutionary game ap-
plying different mutation operators to generate offspring. This is in contrast with the
basic DE, where all the individuals are subject to a single mutation operator. In MSDE;,
every individual of the population may select any one of the two strategies provided to it
in order to produce a perturbed (mutant) vector V; g1.

A single mutation operator is called a pure strategy in the terms of game theory.
A strategy profile, vector p, is a collection of pure strategies such that g = (p1,...,pa),
where p; is the pure strategy used by individual ¢. In the present study, only two mutation
strategies p; and py are considered where p; denotes the usual mutation operation as given
by Equation (1) and p, is defined as:

pi2 = 1/2((X,(r1,G)"21X | (r2,G)"2) f (X (r3,G))
+ (X, (r2, 21X (r3,3)12) f(X,(r1, G))
+(X,(r3,G) 21X (r1, G)"2) f (X, (r2, G))) (4)
/(X (r1, G)X(r2, G)) (X (r3,G))

+ (X, (r2, )X (13, G)) f(X,(r], G)) + (X, (r3,G)| X

The second strategy p. denotes quadratic interpolation, which determines the point of
minima of the quadratic curve passing through three selected points. The symbols have
the usual meaning as described in the previous section. There is no particular rationale
for choosing quadratic interpolation as the second strategy except that it is a well known
method that makes use of gradient in a numerical way. It is a direct search optimization
method and has given good results in several cases [44-46].

At each generation, every individual chooses a mutation operator from its strategy
set based on a probability distribution. This distribution over the set of pure strategies
available to an individual is called the mixed strategy of individual ¢ and is represented by
a vector A; = (Ai(py), - - - , Ai(pg)), where 5(= 2 in our case) is the number of strategies,
and \; (a) is the probability of individual ¢ applying pure strategy a in mutation. To each
individual a payoff is assigned according to its performance using particular mutation
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strategy. An individual can adjust its mixed strategy based on the payoffs of strategies.
Usually, the strategy with a better payoff will be preferred with a higher probability in
the next generation. The procedure of MSDE is outlined as follows:

Pseudo code of MSDE
Stepl: | Determine the initial set S using random number generator and initially assign mixed strategy as:

4 =(4(p) A4 (p,)) = (05,0.5)

Step2: | Calculate the objective function value f(X;) for all X;.

Step3: | Seti=0.

Step4: | i=i+1.

Step5: | For Target vector X; (parent vector) choose strategy (mutation operator) according to probability distribution
/T,-. If probability of pure strategy p, is greater than the probability of strategy p, then go to step 6
otherwise go to step 7.

Step6: | Select three distinct points from population and generate perturbed individual 7; using Equation (1) and go

to step 8.

Step7: | Select one best point and other two distinct points from population and generate perturbed individual 7;by
quadratic interpolation given in Equation (4).

Step8: | Recombine each target vector X; with perturbed individual generated in step 6 or 7 to generate a trial vector
U; using Equation (2).

Step9: | If the trial vector is within the given range then go to step 10 otherwise bring the trial vector within range

using Ui; =2* Xmin,j = Uij » if Uj; < Xmin,j and Ui =2* Xmax,j = Uij if uiJ> Xmax,j and go to Step 10.

Step10: | Calculate the objective function value for vector U..

Stepl1: | Choose better of the two (function value at target and trial point) using Equation (3) for next generation.

Step12: | If the target vector X; uses strategy p_ where o =1, 2 and new point survive in next generation (G + 1)

then
Otherwise

Stepl3: | If I < population size then go to step 4 else go to step 14.

Step14: | Check whether convergence criterion is met. If yes, stop; otherwise go to step 3.

The mixed strategy scheme is applied to the family of DE algorithms given in Section
2.1 using binomial crossover. However, while comparing it with other algorithms, we have
made use of the last scheme described in Section 2.1 because as mentioned earlier this is
the most commonly used version of DE and all the algorithms taken for comparison in
this study follow the same.

4. Experimental Setup. The main parameters of DE are population size, scaling factor
and the crossover rate. After conducting several experiments for deciding the optimal
choice of parameters, we considered the following parameter setting. The number of
individuals in the population is taken as a fixed quantity, 100. Values of scaling factor F'
outside the range of 0.4 to 1.2 are rarely effective, so the value of F' is taken as 0.5, which
is generally considered good initial choice. The crossover rate C, is taken as 0.33. The
proposed MSDE algorithm has an additional parameter -, for which the value is taken as
1/3 [41].

All the algorithms are executed on a PIV PC, using DEV C++, thirty times for each
problem. In every case, a run is terminated when the function values of all points in
population S were identical to an accuracy of five decimal places, i.e., | finax — fmin| < € =
1075 or when the maximum number of function evaluations (NFE = 10°) was reached,
whichever occurred first.
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5. Benchmark Problems. The performance of the proposed algorithm is tested on a set
of eleven benchmark problems taken from literature [30]. All the functions are multimodal
in nature except for the functions foy and frp which are unimodal. Functions fov, fpar,
frB, fcps and fgs are of fixed dimensions 4, 5, 10, 2 and 3 respectively and the remaining
test problems are scalable in nature. The scalable problems are tested for dimensions 10,
20 and 50. Thus the total number of cases considered is 23. Abbreviation and name of
the problems are as:

TABLE 1
Sfswr: | Schwefel, | fzg: | Rosenbrock, | fou: | Quartic,
fack: | Ackley, fow: | Griewenk, frar: | Pathological,
fer: | Colville, Jus: | Hartman 3, fre: | Rastrigin,
frni: | Generalized penalizedl, fess: | Six hump Camel back

6. Numerical Results and Comparisons.

6.1. Comparisons between DE and MSDE. This section compares MSDE with the
basic DE algorithm. Table 2 gives average fitness of function values, standard deviation,
t-values and average error. Average error is defined as the difference between the true
global optimum value and the value obtained by the algorithm. Table 3 provides number
of function evaluations (NFE), improvement in term of number of functions evaluation
of algorithms. As it is clear from the Table 2 that in term of fitness function value and
standard deviation both the algorithms give more or less similar results although in some
cases MSDE performs slightly better than classical DE. On the basis of t-values, last
column of the Table 2, we conclude that there is a significant difference between both the
algorithms at 5% level of significance. The superior performance of the proposed MSDE is
more evident from Table 3, which gives the average number of function evaluations. From
Table 3, we can see that MSDE takes less number of function evaluations to achieve the
required fitness in comparison to the basic DE in all cases except Quartic function (for),
in which both the algorithms approach to the maximum number of function evaluation
(NFE = 10%). Only in case of Rosenbrock function (fzz), MSDE took more number of
function evaluation than basic DE. In terms of percentage improvement in number of
function evaluations, MSDE reduces the number of function evaluation up to 96% for the
function (frq) of dimension 50 which is the maximum reduction in number of function
evaluations in all the cases. The total NFE taken by DE is 6659200 whereas in case of
MSDE, the total NFE is 4441250 only. An overall acceleration rate (AR) [30], for the
proposed MSDE algorithm is about AR = 33.30%. This implies that the proposed MSDE
algorithm is more than 30% faster than the basic DE algorithm.

Performance curves (convergence graphs) of few selected functions are illustrated in
Figures 1(a)-(d). From these graphs also we can see that the convergence of proposed
algorithm is faster than basic DE.

6.2. Influence of dimensionality. It is often observed that the performance of an al-
gorithm may deteriorate with the increase in the dimension of the problem. Therefore, in
order to check the influence of dimensionality on the proposed MSDE we increased the
dimensions of the scalable problems from 50 to 200 (taking an interval of 50).

Here, we fixed the maximum NFE as 10° and recorded the corresponding results in
Table 4 in terms of average fitness and standard deviation. All the problems considered are



TABLE 2. Mean fitness, standard deviation of functions in 30 runs and ¢-value

DIFFERENTIAL EVOLUTION USING MIXED STRATEGIES

. Mean fitness (Std) Average error
Fun. | Dim. t-value
DE MSDE DE MSDE
-4189.83 -4189.83
10 0.000128469 0.000128368 0
(4.1263e-007) (3.00514e-007)
-8379.66 -8379.66
Sswr 20 0.000258515 0.000257919 0
(9.66001e-007) (8.31499e-007)
-20949.1 -20949.1
50 0.00064596 0.000645155 0
(1.29067e-006) (1.25273e-006)
4.89922¢-006 3.65155e-007
10 4.89922¢-006 3.65155e-007 24.33
(9.3006e-007) (4.20151e-007)
1.02463e-005 3.01699e-006
Jack 20 1.02463e-005 3.01699e-006 16.39
(2.00048e-006) (1.35368e-006)
2.31386e-005 6.72181e-006
50 2.31386e-005 6.72181e-006 36.76
(2.21348e-006) (1.04039e-006)
. 4.5118e-008 7.83712e-010
Jev 4 4.5118e-008 7.83712e-010 10.42
(2.32542e-008) (1.15383e-009)
1.20068e-004 1.77752e-005
10 0.000120068 1.77752e-005 11.41
(4.75295e-005) (1.22154e-005)
8.03444e-004 1.21088e-004
Jou 20 0.000803444 0.000121088 23.34
(0.000154331) (4.24884e-005)
6.92452e-003 4.3024e-004
50 0.0003418 0.00002384 28.11
(0.00125875) (0.000126203)
5.14828e-004 0.000000
Jear 5 0.000514828 0.000000 10.74
(0.000262477) (0.000000)
1.62983e-006 3.70693e-008
10 1.62983e-006 3.70693e-008 15.42
(5.62915e-007) (5.54947e-008)
3.30759¢e-006 5.15673e-007
Jra 20 3.30759e-006 5.15673e-007 25.10
(5.62531e-007) (2.33515e-007)
1.56347e+002 1.7742e-006
50 156.347 1.7742e-006 549.47
1.55847 3.51253e-007
1.81887e-006 5.57968e-005 1.81887e-006
fre 10 5.57968e-005 1.87
(1.77091e-006) (0.000157562)
9.48435e-007 5.85615e-008
10 9.48435e-007 5.85615e-008 14.49
(3.33338e-007) (4.37959e-008)
3.68394e-006 5.40822e-007
Jow 20 3.68394e-006 5.40822e-007 17.81
(9.27743e-007) (2.69767e-007)
9.66678e-006 1.69896e-006
50 9.66678e-006 1.69896e-006 40.03
(1.00454e-006) (4.23073e-007)
9.38479e-007 1.8547e-007
10 9.38479e-007 1.8547e-007 22.67
(1.77917e-007) (3.77841e-008)
3.80868e-006 1.55568e-006
Jewi 20 3.80868e-006 1.55568e-006 12.06
(8.9966€-007) (4.87461e-007)
9.30713e-006 6.37824e-006
50 9.30713e-006 6.37824e-006 12.82
(1.2164e-0060) (1.25104e-006)
-1.03163 -1.03163
Jess 2 1.55038e-006 0.000268453 0
(7.93442e-009) (1.28681e-014)
-3.8623 -3.8623
Jus 3 0.000482381 0.000482339 0
(4.34641e-008) (6.36759e-010)
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TABLE 3. Number of functions evaluation % improvement and average time
of functions in 30 runs

) No of function Eva.
Fun. Dim. % Improvement
DE MSDE
10 26710 19690 26.28229
Jswr 20 56090 40450 27.88376
50 190700 141520 25.7892
10 31040 14350 53.76
Jack 20 57830 20390 64.74
50 154490 39260 74.58
S 4 76160 58780 22.82
10 1e+006 1e+006 0.00
Jou 20 1e+006 1e+006 0.00
50 1e+006 1e+006 0.00
Soar 5 1e+006 27200 97.28
10 52850 14060 73.3964
JrG 20 345100 23160 93.2889
50 1e+006 36580 96.342
frs 10 141340 888730 0.00
10 60880 13980 77.03
Jow 20 52690 16990 67.75
50 121930 30080 75.33
10 20600 8070 60.82524
Jewi 20 45250 13610 69.92265
50 213080 28880 86.44641
Jess 2 7190 2400 66.62
fus 3 5270 3070 41.74573
¥ 6659200 Y 4441250 AR=33.3065

multimodal in nature where the complexity increases with the increase in dimensionality of
the problem. We can observe that up to dimension 50, the two algorithms are comparable
only in case of fewr and fop. For all the other problems there is a significant difference
in the fitness function value for dimension 50 particularly in case of frs and fpni, where
there is 100% improvement in the function value. For dimensions higher than 50, except
for fowr, there is more than 90% improvement in the fitness function value for all the
test cases.

The results clearly indicate that MSDE surpasses DE in all the cases. The superior
performance of MSDE is also evident from Figure 2 and Figure 3 with respect to function
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FIGURE 1. (a): performance curves of DE vs. MSDE for function fac,
dimension 20; (b): performance curves of DE vs. MSDE for function fsc,
dimension 50; (c): performance curves of DE vs. MSDE for function faw,
dimension 20; (d): performance curves of DE vs. MSDE for function fope

fack. Figure 2 shows that with the increase of time the fitness function value converges
more rapidly in case of MSDE in comparison to basic DE. In Figure 3, we show the effect
on fitness function value with the increase in dimension. From the graph, it can be seen
that the fitness remains almost consistent for MSDE when the dimension is increased,
whereas the performance of basic DE, deteriorates with the increase in dimension of the

problem.
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7. Comparison of MSDE with Other Modified Versions of DE. The performance
of the proposed MSDE algorithm is further assessed by comparing it with five recent mod-
ified versions of DE available in literature namely: Trigonometric mutation differential
evolution, TDE [34], DEahcSPX [47], bare bone differential evolution, BBDE [36], dif-
ferential evolution with random localization, DERL[48] and differential evolution with
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TABLE 4. Mean fitness and standard deviation of scalable function in 30 runs

) Mean fitness Std
Fun. Dim.
DE MSDE DE MSDE
50 -20337.8 -20924.8 836.725 48.2742
100 -19599.9 117510 771.349 407.162
L 20422.4 -20581.3 520.802 700.372
200 -25550.6 -23108.3 397.804 423.306
50 | 000390277 | 6.98221e-007 | 0.000390698 | 4.52771e-008
100 3.81244 8.128856-007 0070367 | 5.959266-007
Jaee 8 10.5221 9.296436-007 0.215458 | 1.079386-007
200 15.6727 1.98694¢-006 0.150102 | 7.448136-007
50 0.0741305 0.00441708 00112104 | 0.00110143
100 0.980489 0.0141425 0.147694 0.00333821
Jev s 452345 0.0201761 3.21039 0.0260641
200 408.698 0.0211157 27,574 0.0165785
50 268.947 1.75744¢-007 9.41583 3.38434¢-008
100 841.086 2.704736-007 11.1428 4.532676-008
e 1463.33 2 75742¢-007 32,5051 1.72157¢-008
200 2202.76 4.910366-007 32,3485 3.283646-007
50 | 0000612059 | 2.30494e-007 | 0.000248435 | 3.77458¢-008
100 264676 2 576216-007 0.185725 | 4.50721e-008
Jor s 98.2393 3.09592¢-007 3.78504 8.87582¢-008
200 535.535 4.114146-007 14,579 3.177816-007
50 62787.6 7.072316-007 44504.5 1.66856¢-007
100 | 2.12673¢+007 | 7.84554e-007 | 1.17872¢+006 | 1.26001e-007
It 750 | 17537364008 | 1400680006 | 18700761007 | 2.787226.007
200 | 6.82924e+008 | 4.05958¢-006 | 3.93012e+007 | 3.06801e-006

preferential crossover, DEPC [48]. In this section, we give a brief description of these
algorithms.

In order to compare the proposed MSDE algorithm with the algorithms, we selected
the test problems common to the present study and to the algorithm with which MSDE
is being compared. Also in order to be fair, we have taken the same comparison criteria
as mentioned in the literature of these algorithms. The results obtained are summarized
in Tables 5, 6, 7 and 8.

In Table 5, we show the comparison of MSDE with TDE. Because the data for com-
parison purpose is not given in [34], we have taken the same parameter setting as given in
[34] and run TDE thirty times for each function, here, we have taken dimension twenty
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for scalable problems. The numerical results show that the mean fitness value as well as
number of function evaluations obtained by MSDE is better than TDE in all cases.

Comparison between MSDE and DEahcSPX [47] is made in Table 6. Following the
comparison criteria given in [47]; we first fixed the number of function evaluations (NFE)
as 3¥10° and executed the proposed MSDE thirty times up to maximum NFE and recorded
the average fitness function value. We then fixed the accuracy as 107% and recorded the
maximum NFE required to obtain the desired accuracy. From the results given in Table 6,
it can be seen that MSDE surpasses DEahcSPX in 4 cases while DEahcSPX outperforms
MSDE in the remaining 2 cases out of the total 6 cases considered for comparison.

Comparison between MSDE and BBDE [36] is given in Table 7. In this case, the number
of test problems common to both the papers is 11. As in [36], comparison is made in terms
of average fitness function value only we executed the proposed MSDE algorithm thirty
times up to maximum NFE = 5% 10* and recorded the fitness. The corresponding results
show that MSDE surpasses BBDE in 7 cases while BBDE outperformed MSDE in 3 cases
and in the remaining case, there was a tie between BBDE and MSDE.

In Table 8, a comparison is made between MSDE, DERL [48] and DEPC [48]. Here,
we made comparison in term of NFE, for this, we run our algorithm MSDE thirty times
to achieve an accuracy 10™* and recorded the NFE, here, we have taken the dimension of
scalable problems as 10. From the corresponding results given in Table 8, we can easily
observe that MSDE surpasses DELR and DEPC in 5 cases while DERL outperform MSDE
in 3 cases out of 11 cases.

TABLE 5. MSDE Vs TDE in term of fitness value, standard deviation and
average of function evaluation in 30 runs for dimension 20

Fun Mean fitness Standard deviation (Std) No of fun. Evaluation
TDE MSDE TDE MSDE TDE MSDE
Sswr -8379.66 -8379.66 2.61108e-007 | 8.31499e-007 679320 40450
Jack 8.38861e-006 | 3.01699¢-006 | 2.44146e-006 | 1.35368e-006 62800 20390
Sfov 1.56403e-007 | 7.83712e¢-010 | 1.07845e-007 | 1.15383e-009 30420 58780
Jou 0.000413125 | 0.000121088 | 0.000166186 4.24884e-005 1e+006 | 1e+006
Spar 0.00201115 0.000000 0.00264581 0.000000 368240 27200
Jre 10.5827 5.15673e-007 2.83003 2.33515e-007 1e+006 23160
frs 4.85175e-006 3.51466 2.95541e-006 0.378219 242140 | 1e+006
Jow 0.00148201 5.40822¢-007 | 0.00295796 2.69767e-007 54320 16990
Seni 2.61676e-006 | 1.55568e-006 | 5.65888e-007 | 4.87461e-007 125660 13610
Jess -1.03163 -1.03163 1.11409e-008 | 1.28681e-014 9040 2400
Sus -3.8623 -3.8623 2.0025e-008 6.36759e-010 6500 3070

8. Analysis of Mixed Strategy on Family of DE Algorithms Using Non Para-
metric Test. As mentioned in Section 2.1, Storn and Price suggested ten versions of DE
collectively known as the family of DE algorithms. These versions typically differ from
each other in the manner in which mutation and crossover operators are applied. In this
section, we analyze the application of mixed strategy on the last five versions mentioned
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TABLE 6. MSDE Vs DEachSPX in term of mean fitness value, standard
deviation and average of function evaluation in 30 runs for dimension 30

Fun. Mean fitness after st NFE to achieve an t-value
NFE=300000 accuracy 10°
DEahcSPX MSDE DEahcSPX MSDE DEahcSPX MSDE
fswr 4.70e+02 3.82¢-04 2.96e+02 6.12e-06 -- 63600 8.69
Jack 2.66e-15 1.45¢-16 0.00e+00 6.28e-17 129211 30370 219.35
fre 2.14e+01 0.00e+00 1.23e+01 0.00e+00 -- 30080 9.52
fre 4.52e+00 2.19¢+01 1.55e+01 1.05e-01 299913 -- -6.14
Jow 2.07e-03 0.00e+00 5.89e-03 0.00e+00 121579 22990 1.92
Seni 2.07e-02 1.35e-19 8.46e-02 9.68e-27 96149 21950 1.34

TABLE 7. MSDE Vs BBDE in term of mean fitness value, standard devia-
tion and t-value

Fun. | Dim Mean fitness after NFE=5000 Std t-value
BBDE MSDE BBDE MSDE
30 -11649.008729 -12569.5 272.707782 0.0167741 18.48
Jone 100 -34746.152554 -15032.4 3750.927593 486.798 -28.54
30 0.0 5.28125e-012 0.0 3.78586e-012 -7.64
Jaex 100 0.0 0.000136263 0.000001 7.03266e-005 -10.61
30 37.551246 0.00 15.254959 0.00 13.48
Jro 100 616.194754 2.68118¢-005 38.115845 1.87538e-005 88.54
30 47.857080 26.0205 31.835408 0.120493 3.75
Jus 100 312.632070 97.1313 195.546311 0.0283949 6.03
30 0.000657 0.00 0.002583 0.00 1.39
Jor 100 0.001640 2.23292e-006 0.005296 2.09332e-006 1.69
fess 2 -1.031628 -1.031628 0.0 2.22045e-016 0

in Section 2.1. These versions make use of binary crossover and are more popular than
the other five versions.

The usual parametric tests like two tailed student ¢-test that are commonly used for
analyzing two algorithms cannot be used when we are simultaneously comparing more
than two algorithms. In a recent study, performed by Garcia et al [49], it was suggested
with the help of several examples and statistical tests that the parametric statistical
analysis is not be appropriate specially when dealing with multiple problems results. In
multiple problem analysis, they proposed the use of non-parametric statistical tests given
that they are less restrictive than parametric ones and they can be used over small size
sample results.
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TABLE 8. MSDE Vs DERL and DEPC in term of mean of function evalu-
ation and mean time

Fun. No of Function Evaluation to achieve Time (in sec)
accuracy 10

DERL DEPC MSDE DERL DEPC MSDE
Sswr 21738 24046 19690 0.86 0.37 0.20
Jack 21983 29825 14350 0.75 0.80 1.10
fro 96428 26927 14060 2.11 0.42 0.20
frs 198584 512165 888730 7.28 10.52 14.88
Sow 15231 47963 13980 0.67 0.75 0.30
foni 9568 13732 8070 0.28 0.19 0.20
fess 766 911 2400 0.04 0.04 0.01
fus 1032 1354 3070 0.03 0.03 0.02

The following analysis is used to determine in a rigorous manner whether there is a sta-
tistically significant difference in the results, average error taken from Table 2, indicating
that the proposed algorithms outperforms the basic DE algorithm. Parametric statisti-
cal tests to measure significance (e.g., the ¢t-test or ANOVA) assume samples are nearly
normally distributed. However, in practice samples are often not normally distributed
[50] and applying parametric methods on such samples can lead to incorrect statistical
inferences [51]. The significance of using non-parametric analysis for the comparison of ex-
perimental data, which is not uniformly distributed, has been shown by many researchers.
A detailed study on the use of non-parametric tests for analyzing the evolutionary algo-
rithms is given in [49]. Other examples on the application of non-parametric tests can be
found in [51-54].

We first examined whether test results (scores) are nearly normally distributed. For
this analysis, we used the two-tailed Kolmogorov-Smirno and Shapiro-Wilk test which
provides test statistics and significant-values. The null and alternative hypotheses are:

Hy: F(z) =G(x) (5)

H,: F(x) # G(x) (6)

where F(z) is the unknown distribution function of a set of results and G(z) is the
Gaussian one, respectively. Table 12 provides the test statistic and significant values of
the normality testes over the samples results obtained by DE and MSDE. Figures 5 and 6
represent the corresponding histograms and Q-Q plots for such samples. Now, from Table
12, we can see that the null hypothesis Hj is rejected at both significance levels @ = 0.05
and a = 0.10, because significant values in Table 12 are less than significance levels and
hence assume the results are not normally distributed. This implies that nonparametric
methods will be more efficient. We then compared the behaviour of the two algorithms
by means of pair wise statistical tests:

e The p-value with a paired t-test is p = 0.328. The paired ¢-test does not consider
the existence of difference in performance between the algorithms.
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e The p-value with a Wilcoxon test is p = 0.002. The Wilcoxon t-test also does not
consider the existence of difference in performance between the algorithms, but it
considerably reduces the minimal level of significance for detecting differences.

Next, we examined whether a statistically significant difference exist between any of
the sets of results of Table 11.

Values in Table 11 allow us to carry out a rigorous statistical study. Our study is focused
on the algorithm that had the lowest average error rate in comparison, MSDE /rand /1 /bin.
We studied the behavior of this algorithm with respect to remaining ones and determined
if the results it offered are better than the ones offered by the rest of algorithms, computing
the p-values for each comparison. Table 13, shows the result of applying Friedman’s test
in order to see whether there are global differences in the results. Given that the p-
values of Friedman is lower than the level of significance considered o« = 0.05, there are
significant differences among the observed results. Attending to these results, a post-
hoc statistical analysis could help us to detect concrete differences among algorithms. For
this, we will employ Bonferroni-Dunn’s test to detect significant differences for the control
algorithm. Table 14 summarizes the ranking obtained by Friedman’s test and the critical
difference of Bonferroni-Dunn’s procedure. Figure 7 display graphical representations
(including the rankings obtained for each algorithm). In a Bonferroni-Dunn’s graphic,
the difference among rankings obtained for each algorithm is illustrated. In them, we
can draw a horizontal cut line which represents the threshold for the best performing
algorithm, that one with the lowest ranking bar, in order to consider it better than other
algorithm. A cut line is drawn for each level of significance considered in the study at
height equal to the sum of the ranking of the control algorithm and the corresponding
Critical Difference computed by the Bonferroni-Dunn method. Those bars which exceed
this line are associated to an algorithm with worse performance than the control algorithm.
The application of Bonferroni-Dunn’s test informs us that MSDE/rand/1/bin is better
than MSDE /best/1/bin and MSDE /target-to-best/1/bin with a = 0.05 and o = 0.10 (2/5
algorithms) whereas its performance is at par with the remaining two DE versions.

9. Comparative Performance of Algorithms on Real Life Problems. The per-
formance of proposed MSDE algorithm is further analyzed on two interesting real life
problems which are common in various fields of engineering designs [55]. These are: (F'1)
frequency modulation sound parameter identification and (F'2) the spread spectrum radar
poly-phase code design problem. The first problem is of fixed dimension, six. The second
problem F'2 is tested for two sets of dimensions; 19 and 20. Both the problems considered
in the present study are highly nonlinear in nature. Mathematical models of the problems
are given in the Appendix.

Numerical results to test the performance measures of algorithms for the real life prob-
lems are given in Table 15. From this Table, we can see that in terms of average fitness
function value, the proposed algorithm gives better solution in comparison to other al-
gorithms. Standard deviation of MSDE is lesser than other algorithms for frequency
modulation sound parameter identification problem while for the spread spectrum radar
poly-phase code design problem its standard deviation is more or less similar to other
algorithms.

10. Discussion and Conclusions. In this paper, we proposed a modified version of
basic DE called Mixed Strategy Differential Evolution (MSDE) based on evolutionary
game theory. In MSDE algorithm, a choice of two mutation strategies is given to the
individuals by incorporating a mixed mutation strategy. The simulation of results show
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that the proposed algorithm is quite competent for solving problems of different dimen-
sions in lesser time and lesser number of function evaluations without compromising with
the quality of solution. Numerical results show that while using MSDE, there is an im-
provement of more than 30% in convergence rate in comparison to basic DE. Further for
higher dimensions also the proposed MSDE surpassed the basic DE quite significantly in
terms of fitness function value.

The performance of MSDE is also compared with five other recently modified versions
of DE algorithm available in literature. In order to give an advantage to the algorithms
with which we were comparing the MSDE algorithm, we changed the parameter settings
of DE as that of other algorithms. The corresponding numerical results showed that even
under the changed parameter settings, the MSDE algorithm performed better than other
algorithms in most of the cases.
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FIGURE 4. (a): performance curves of DE vs. MSDE for function fac,
dimension 20; (b): performance curves of DE vs. MSDE for function few,
dimension 20; (¢): performance curves of DE vs. MSDE for function fpar,
dimension 5; (d): performance curves of DE vs. MSDE for function fov;
(e): performance curves of DE vs. MSDE for function fps;
(f): performance curves of DE vs. MSDE for function fack
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Although we have applied the concept of mixed strategy on DE/rand/1/bin version,
the discussion in Section 8 shows that all the versions of DE will perform more or less
in a similar manner on application of mixed strategy. This shows that mixed mutation
strategy is beneficial in comparison to single strategy. One apparent drawback of proposed
MSDE is that for noisy functions like f3 it takes more time than the basic DE, although

M. ALI, M. PANT, A. ABRAHAM AND V. SNASEL

the numbers of function evaluations are same.

We would like to maintain that the work is still in the stage of infancy and we are
working on it to further improve its performance. In this paper, we have taken only two
strategies we intend to work with more strategies in future. The concept of mixed strategy

can be applied to population generation and crossover rates also.
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TABLE 11. Average of error of functions in 30 runs
Fun. | Dim. Average Error
MSDE/rand/1 | MSDE/rand | MSDE/best/1 | MSDE/best/ MSDE/tar- DE
12 2 to-best/1
10 1.00000e-02 1.00000e-02 1.00000e-02 1.00000e-02 1.00000e-02 1.00000e-02
Jswr 20 2.00000e-02 2.00000e-02 | 2.36878e+02 2.00000e-02 2.00000e-02 2.00000e-02
50 4.50000e-01 4.50000e-01 | 1.99374e+03 | 7.10645e+02 | 1.77654e+03 4.50000e-01
10 9.36269e-07 7.35553e-07 9.04351e-07 1.23575e-06 1.31125e-06 4.79698e-06
Jack 20 2.81864e-06 2.99136e-06 4.87134e-06 3.20752e-06 4.58544e-06 1.05519-05
50 6.69271e-06 5.80025e-06 9.17246e-06 7.42857e-06 1.09127e-05 2.48575e-05
Jor 4 5.20984e-10 6.07000e-10 | 3.58381e-10 2.76867e-10 1.20257e-11 5.69121e-08
10 2.15633e-05 1.01884e-05 2.25509e-05 4.89016e-05 4.57038e-05 1.75087e-04
Jfou 20 1.02196e-04 1.18770e-04 7.11829e-05 1.19381e-04 7.10113e-05 7.83961e-04
50 4.30240e-04 4.41801e-04 | 4.03578e-04 5.77908e-04 5.13707e-04 6.92452e-03
Jear 5 0.00000e+00 | 0.00000e+00 | 0.00000e+00 | 0.00000e+00 | 0.00000e+00 5.14828e-04
10 3.70693e-08 1.74434e-08 1.20590e-07 7.49299e-08 | 0.00000e+00 1.62983e-06
Jre 20 5.15673e-07 3.03167e-07 9.56508e-07 4.49070e-07 | 0.00000e+00 3.30759e-06
50 1.77420e-06 1.51082e-06 3.57033e-06 2.08360e-06 | 0.00000e+00 | 1.56347e+02
Jra 10 5.57968e-05 2.41223e-04 | 4.36838e-04 1.63859e-01 3.91871e-12 1.81887e-06
10 5.82793e-08 1.89930e-08 1.01552e-07 6.05627e-08 | 0.00000e+00 1.28814e-06
Jow 20 4.23080e-07 4.17229-07 8.99982¢-07 5.97633e-07 | 0.00000e+00 3.88240e-06
50 1.89749e-06 1.35678e-06 3.16480e-06 1.74817e-06 3.25261e-20 9.66551e-06
10 1.85470e-07 1.40694e-07 2.25764e-07 2.16883e-07 4.09094e-19 9.38479e-07
Jeni 20 1.55568e-06 1.17675e-06 1.37731e-06 9.53749e-07 4.89669-17 3.80868e-06
50 6.37824e-06 7.21941e-06 5.88418e-06 6.12007e-06 5.73471e-13 9.30713e-06
Jess 2 3.00000e-05 3.00000e-05 | 3.00000e-05 3.00000e-05 3.00000e-05 3.00000e-05
Jus 3 4.00000e-04 4.00000e-04 | 4.00000e-04 4.00000e-04 4.00000e-04 4.00000e-04
TABLE 12. Normality test over multiple problem analysis
Kolmogorov-Smirnov Shapiro-Wilk
Algo | Statistic | df | Sig. | Statistic | df | Sig.
DE 539 | 23] .000 215 | 23].000
MSDE 342123 .000 595 |23 1.000
TABLE 13. Results of the Friedman test (A=0.05)
N(Total No of fun) | Friedman value | df | p-value
23 41.829 5| 0.000
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TABLE 14. Ranking obtained through Friedman’s test and critical differ-
ence of Bonferroni-Dunn’s procedure

Algorithm Mean Rank
MSDE/rand/1/bin 2.41
MSDE/rand/2/bin 2.67
MSDE/best/1/bin 5.20
MSDE /best/2/bin 3.67

MSDE/target-to-best /1 /bin 3.98
DE 3.07
Crit.Diff. @ =0.05 1.4211
Crit.Diff. @ =0.10 1.2832

TABLE 15. Average and standard deviation for all real life problems. For
F1 maximum NFE is 10° and for F'2 maximum NFE is 5 % 10°

Dim. Mean of fitness and standard deviation for frequency modulation sound parameter problem.
DE MSDE DEGL/SAW [55] SADE [28] NSDE [31]
2.25431e-01 6.27847e-017 4.8152e-09 7.8354e-02 9.4559¢-03
® 1.65639e-03 1.39884e-016 6.2639¢-08 5.8254e-03 6.924e-01
Dim. Mean of fitness and standard deviation for spread spectrum radar poly phase code design problem.
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1.86246e-02 1.91778e-02 5.84e-04 3.88e-05 4.72e-03
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7.38374e-02 1.89746e-02 2.73e-03 6.53e-04 3.44e-02

[28] J. Brest, S. Greiner, B. Bogkovic, M. Mernik and V. Zumer, Self-adapting control parameters in
differential evolution: A comparative study on numerical benchmark problems, IEEE Transactions
on Evolutionary Computation, vol.10, no.6, pp.646-657, 2006.

[29] S. Das, A. Konar and U. Khakraborty, Two improved differential evolution schemes for faster global
search, ACM-SIGEVO Proc. of GECCO, Washington D.C., pp.991-998, 2005.

[30] S. Rahnamayan, H. R. Tizhoosh and M. M. ASalama, Opposition-based differential evolution, IEEE
Transactions on Fvolutionary Computation, vol.12, no.1, pp.64-79, 2008.

[31] Z. Yang, J. He and X. Yao, Making a difference to differential evolution, Advances in Metaheuristics
for Hard Optimization, pp.415-432, 2007.

[32] N. Noman and H. Iba, Enhancing differential evolution performance with local search for high
dimensional function optimization, Proc. of the 2005 Conference on Genetic and Evolutionary Com-
putation, pp.967-974, 2005.

[33] M. M. Ali, Differential evolution with preferential crossover, Furopean Journal of Operation Research,
vol.181, pp.1137-1147, 2007.

[34] H.-Y. Fan and J. Lampinen, A trigonometric mutation operation to differential evolution, Journal
of Global Optimization, vol.27, pp.105-129, 2003.

[35] M. Pant, M. Ali and V. P. Singh, Parent centric differential evolution algorithm for global optimiza-
tion problems, Opsearch Springer, vol.46, no.2, pp.153-168, 2009.

[36] M. G. H. Omran, A. P. Engelbrecht and A. Salman, Bare bones differential evolution, European
Journal of Operational Research, 2008.

[37] P. K. Bergey and C. Ragsdale, Modified differential evolution: A greedy random strategy for genetic
recombination, Omega the International Journal of Management Science, vol.33, pp.255-265, 2005.

[38] X. Zhang, Q. Lu, S. Wen, M. Wu and X. Wang, A modified differential evolution for constrained
optimization, ICIC Ezpress Letters, vol.2, no.2, pp.181-186, 2008.



5084 M. ALI, M. PANT, A. ABRAHAM AND V. SNASEL

[39] U. K. Chakraborty (ed.), Advances in Differential Evolution, Springer-Verlag, Heidelberg, 2008.

[40] J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995.

[41] H. Dong, J. He, H. Huang and W. Hou, Evolutionary programming using a mixed mutation strategy,
Information Science, vol.177, pp.312-327, 2007.

[42] M. Pant, M. Ali and A. Abraham, Mixed mutation strategy embedded differential evolution, IEEE
Congress on Evolutionary Computation, pp.1240-1246, 2009.

[43] K. Price, An introduction to DE, in New Ideas in Optimization, D. Corne, D. Marco and F. Glover
(eds.), London, UK, McGraw-Hill, 1999.

[44] M. Pant, R. Thangaraj and A. Abraham, A new PSO algorithm incorporating reproduction operator
for solving global optimization problems, The 7th International Conference on Hybrid Intelligent
Systems, Kaiserslautern, Germany, pp.144-149, 2007.

[45] C. Mohan and K. Shanker, A controlled random search technique for global optimization using
quadratic approximation, Asia-Pacific Journal of Operational Research, vol.11, pp.93-101, 1994.

[46] K. Deep and K. N. Das, Quadratic approximation based hybrid genetic algorithm for function
optimization, Applied Mathematics and Computation, vol.203, pp.86-98, 2008.

[47] N. Noman and H. Iba, Accelerating differential evolution using an adaptive local search, IFEE
Transactions on Fvolutionary Computation, vol.12, no.1, pp.107-125, 2008.

[48] P. Kaelo and M. M. Ali, Numerical study of some modified differential evolution algorithms, European
Journal of Operational Research, vol.169, pp.1176-1184, 2006.

[49] S. Garcia, D. Molina, M. Lozano and F. Herrera, A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’ 2005 special session on
real parametric optimization, Journal of Heuristics, 2008.

[50] T. Micceri, The unicorn, the normal curve and other improbable creatures, Psychol Bull, vol.105,
no.1l, pp.156-166, 1989.

[51] W. J. Conover, Practical Nonparametric Statistics, 2nd Edition, Wiley, New York, 1980.

[52] J. Demsar, Statistical comparison of classifiers over multiple data sets, Journal of Machine Learning
Research, vol.7, pp.1-30, 2006.

[53] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 4th Edition, Chap-
man and Hall, Boca Raton, 2007.

[54] Y. Tenne And S. W. Armfield, A framework for memetic optimization using variable global and local
surrogate models, Soft Computing, vol.13, pp.781-793, 2009.

[55] S. Das, A. Abraham, U. K. Chakraborty and A. Konar, Differential evolution using a neighborhood
based mutation operator, IEEE Transaction on Evolutionary Computation, vol.13, no.3, pp.526-553,
20009.



