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Abstract—This paper presents binary particle swarm opti-
mization (BPSO) for finding an optimum conflict-free trans-
mission schedule for a broadcast radio network. This is
known as Broadcast Scheduling Problem (BSP) and shown
as an NP-complete problem in earlier studies. Because of this
NP-complete nature, earlier studies used genetic algorithms,
mean field annealing, neural networks, factor graph and sum
product algorithm, and sequential vertex coloring algorithm
to obtain the solution. We are able to achieve better results
using our proposed BPSO. The results are obtained using our
methodology is compared with CPLEX and all the other earlier
solution methods.

Keywords-Broadcast scheduling problem (BSP); packet radio
network, binary particle swarm optimization (BPSO); time-
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I. INTRODUCTION

The design problem that occurs in packet radio net-
work is known as Broadcast Scheduling Problem (BSP).
The objective of BSP is to find an optimal time-division
multiple-access (TDMA) frame. The optimal TDMA frame
should be able to schedule transmission of all nodes in a
minimum TDMA frame length without conflict, and should
also maximize the channel utilization or total conflict-free
transmission. A TDMA frame is a time frame, which is
divided into M equal length time slots. In a TDMA cycle,
each node should be scheduled at least once and is known
as no − transmission constraint. Another constraint in
this BSP scheduling problem is no− conflict constraint.
No-conflict constraint has primary conflict and secondary
conflict. Primary conflict constraint is that a node cannot
transmit and receive simultaneously. Secondary conflict con-
straint is that a node is not allowed to receive more than
one transmission simultaneously. With these constraints, the
BSP problem is minimize M (time slots) and maximize
the channel utilization or total conflict-free transmission.
Another objective is to minimize the average packet delay.
The average packet delay is reduced if the channel utilization
is maximized [1].

It is shown in earlier studies that this BSP is an NP-
complete combinatorial optimization problem. Hence, earlier
studies used genetic algorithms, mean field annealing, neural

networks, factor graph and sum product algorithm, sequen-
tial vertex coloring algorithm, and Simulated Annealing to
obtain the solution. We will discuss the methodologies used
in earlier studies.

Genetic Algorithms (GA) is a search algorithm based
on the mechanism of natural selection that transforms a
population (a set of individuals) into a new population (i.e.,
next generation) using genetic operators such as crossover,
mutation and reproduction [2], [3], [4]. In the early works
on GA [3], the solution (string) representation was restricted
to only binary digits (0 and 1), and it is shown in [5]
that a natural representation of strings are more efficient
and produce better results. The applicability of GAs to
broadcast scheduling problem is shown in [6]. In their
study [6], a randomized algorithm is presented to create
elite initial population. This randomized algorithm satisfies
all the constraints of the BSP problem and so they obtain
valid initial solutions. A modified crossover operator is also
presented in [6], and a proof that all solution in every
generation are valid solution; i.e., all solutions satisfy all
the constraints.

The well-known Simulated Annealing (SA) is based on
annealing process in statistical mechanics [7]. It is known
that SA can be used for solving difficult combinatorial
optimization problems. The broadcast scheduling problem
is solved using the mean field analysis in [8]. Simulated
annealing uses a stochastic process whereas Mean Field
Annealing (MFA) uses a set of deterministic equations.
Simulated annealing with valid solution mechanism is used
for TDMA BSP [1].

The factor graph and the sum product algorithm presented
in [9] is a selforganizing distributed algorithm using only
local collaborative interactions among the neighboring nodes
in the network. The approach used in [9] is divide the
constraints of BSP into many simple rules, and these rules
are enforced by a local processing unit in the factor graph.
The optimal broadcast schedule is obtained by using the
sum product algorithm in an iterative manner from the
information exchanged among local processing units. A
chaotic neural network for solving the BSP problem is given
in [10].

Motivation of our study is to present a BPSO for TD-



MA broadcast scheduling problem. First, we present the
scheduling problem and our BPSO methodology in section
II and III. In section IV, we present the results obtained
using our methodology and CPLEX(IBM ILOG CPLEX
optimization studio, optimization software package) and
show that our method performs better than all other earlier
solution methods, in terms of number of time slots used and
utilization.

II. THE BROADCAST SCHEDULING PROBLEM

In our previous work[1], we briefly describe the broadcast
scheduling problem that arises in packet radio network
considered in earlier studies [6], [9], [8], [10], [11], [12].
A given packet radio network can be represented by graph
G = (V,E), where vertices V = 1, 2, ..., N are the radio
network nodes and N is the total number of nodes in the
network. E is the set of transmission links. In Broadcast
Scheduling Problem (BSP), we need to obtain a schedule
for transmission for all stations, so that no collision among
packets takes place. In the schedule, the time is divided into
slots of equal length. The number of time slots in each frame
is fixed. We are interested in finding an optimal collision
free transmission schedule for stations in a frame. Once this
is obtained the frame is repeated in time. In the graph G,
two nodes i and j(i, j ∈ E) are connected by an edge
if and only if they can receive each other’s transmission.
In this situation, the nodes i and j are one hop away or
adjacent neighbors. When two adjacent neighbors transmit
in the same time slot, a primary conflict occurs. When a
node receives two different packets from two of its adjacent
neighbors in the same time slot, a secondary conflict
occurs. The network topology can be represented by an
N ×N connectivity matrix C defined as

cij =

{
1 if nodes i, j are one hop apart
0 otherwise. (1)

Another N ×N matrix called compatibility matrix D is
defined as

dij =

 1 if nodes i, j are one hop apart or
two hop apart

0 otherwise.
(2)

Our objective is to obtain an optimal conflict free TDMA
frame for packet transmission that also satisfies the con-
straints. This TDMA frame is repeated over time.

We use an N × N binary matrix X = xmj to denote a
TDMA frame, where M is the number of time slots in the
TDMA frame. The matrix X is defined as

xij =

 1 if time slot m in a frame is assigned
to node j

0 otherwise.
(3)

For node j the channel utilization ρj is defined as

ρj =
the number of slots assigned to node j

TDMA cycle length

=

∑M
i=1 xmj

M
(4)

The channel utilization for the entire network ρj is given
as

ρ =
1

M ×N

M∑
m=1

N∑
j=1

xmj (5)

The objective of the BSP is to find a transmission (T-
DMA) frame with minimum number of time slots, which
satisfies all the constraints and also maximize the channel
utilization ρ. The BSP is described as:

BSP: Minimize M and maximize ρ, subject to the fol-
lowing constraints

M∑
m=1

xmj ≥ 1, ∀j (6)

M∑
m=1

N∑
i=1

N∑
j=1

xmi × xmj × dij (7)

Equation (6) represents the no-transmission constraint and
equation (7) represents the no-conflict constraint.

III. BINARY PARTICLE SWARM OPTIMIZATION

Difficult combinatorial optimization problems have been
solved in a successful manner by using discrete particle
swarm optimization [13]. The flowchart of binary particle
swarm optimization (BPSO) for TDMA broadcast schedul-
ing problem (BSP) in this paper is given in Fig. 1. For the
BSP, the BPSO starts with a non-optimal (but a valid) initial
TDMA schedule (solution). Initial valid and non-optimal T-
DMA schedule can be generated randomly. BPSO improves
the initial TDMA schedule (solution) by selecting a new
particle (TDMA schedule) which improves the objective
function value.

In BPSO, we first select the initial valid solution (valid
TDMA schedule) by using the randomized algorithm given
in [6]. This initial valid solution (TDMA schedule) is further
modified to improve the utilization (ρ) and is used as a
starting solution in BPSO. We call the modification as valid
solution mechanism [1]. The modifications are done by using
the information given by compatibility matrix (D-matrix).

The valid solution mechanism [1] for improving the
solution (TDMA schedule) is used in our study. In the BPSO
methodology, the generation of initial feasible solutions has
the following steps.

1) Decide the sequence to allot time slots for different
nodes in the permutation sequence.
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Figure 1. Flow-chart binary particle swarm optimization (BPSO)

2) Assign time slot 1 to the first node for the sequence.
3) Check that time slot 1 can be assigned to the second

node using matrix D.
4) Assign time slot 2 to the second node if time slot 1

cannot be assigned to the second node. We assume
that time slot 2 is assigned to the second node.

5) Check that time slot 1 and 2 can be assigned to the
third node using matrix D.

6) Assign time slot 3 to the third node if time slot 1 and
2 cannot be assigned to the third node.

7) Follow the previous steps until all nodes are assigned
to minimize the time slot M if possible.

8) Maximize time slot utilization if possible using matrix
D after all nodes are assigned.

In the BPSO methodology, we can show the generation
of new particles (solutions) using the following example.

Xi
j = jth particle(solution) for generation i

f(Xi
j) = Evaluation value of particle Xi

j

i = Number of generation (0< i <Maximum number of
generation)
j = Number of particle (0< j <Number of particle)

As shown in Fig. 2,

X1
1 is 1st particle for generation 1

X2
1 is 1st particle for generation 2

pbest11 is assigned the value of the particle 1 with best
performance
gbest1 is assigned the value of the particle with the best

=- rM

=- rM =- rM =- rM

Figure 2. Generation of new particle X2
1

performance so far in the all particles

We should minimize the value of M − ρ. The evaluation
values of X1

1 , pbest11, gbest1 are assumed to be 4.8, 4.8,
and 3.75. The weights of X1

1 , pbest11, gbest1 are w, r1× c1
, and r2 × c2 ( w=1, c1=2, c2=3, r1=0.8, r2=0.6).

The probabilities at ¬ (1,1),  (1,2), ® (2,5) of X1
1 ,

pbest11, gbest1 are 1 based on the following.

¬ :
1
4.8 × 1 + 0.8× 1

4.8 × 2 + 0.6× 1
3.75 × 3

1
4.8 × 1 + 0.8× 1

4.8 × 2 + 0.6× 1
3.75 × 3

= 1

 :
0

1
4.8 × 1 + 0.8× 1

4.8 × 2 + 0.6× 1
3.75 × 3

= 0

® :
0.6× 1

3.75 × 3
1
4.8 × 1 + 0.8× 1

4.8 × 2 + 0.6× 1
3.75 × 3

= 0.4698

The probabilities 1, 0, and 0.4698 are mapping to vmin =
−4 and vmax = 4.

v¬(t+ 1) = 1× 8− 4 = 4

v(t+ 1) = 0× 8− 4 = −4

v®(t+ 1) = 0.4698× 8− 4 = −0.2416

The Sigmoid function is used to calculate these probabil-
ities.

P¬ = S(v¬(t+ 1)) =
1

1 + e−4
= 0.9820

P = S(v(t+ 1)) =
1

1 + e4
= 0.0180

P® = S(v®(t+ 1)) =
1

1 + e0.2416
= 0.4399

The time slot 1 of X2
1 can be assigned to node 1 with

probability 98.2% at the position ¬. If the random number
(0∼1) is less than 0.982, then the time slot 1 for node 1
is assigned. Otherwise, the time slot 1 for node 1 is not
assigned. The time slot 1 of X2

1 can be assigned to node
2 with probability 1.8% at the position . If the random
number (0∼1) is less than 0.0180, then the time slot 1 for
node 2 is assigned. Otherwise, the time slot 1 for node 2 is
not assigned. The time slot 2 of X2

1 can be assigned to node
5 with probability 43.99% at the position ®. If the random



Figure 3. The optimal solution using our proposed method for 15 node
network

Table I
COMPARISON OF OUR RESULTS FOR N = 15 NODE NETWORK: BASED

ON NUMBER OF TIME SLOTS M AND UTILIZATION ρ

Algorithm
Node

15
M ρ

CPLEX 8 0.167
Proposed method 8 0.167
Chen[9] 8 0.167
Kim[1] 8 0.167
Gunasekaran[14] 8 0.167
Wang[8] 8 0.15
Wang[10] 8 N/A
Wu[11] 8 0.167
Yeo[12] 8 0.15

number (0∼1) is less than 0.4399, then the time slot 2 for
node 5 is assigned. Otherwise, the time slot 2 for node 5 is
not assigned.

IV. SIMULATION RESULTS AND COMPARISON WITH
OTHER METHODS

In this section, we present the simulation results obtained
by using our BPSO, and also present a comparison of
performance of our BPSO with the results obtained in
earlier methods. As mentioned in [6], there is no standard
benchmark problem set and so we compare our results with
the available results given in earlier studies, and show the
performance improvement in packet radio networks using
our BPSO methodology. The performance criteria used for
comparison are M (time slots), ρ (channel utilization for
the whole network), and the average time delay. We first
consider a small-scale network with N = 15. The TDMA
schedule obtained using our BPSO methodology is shown
in Fig. 3. In this Fig. 3, a black box represents an assigned
time slot. The schedule obtained in our methodology has 8
(M ) time slots and the utilization of the whole network (ρ)
is 0.167 (20/120) which is the same to the optimal solution
using CPLEX. The same result is obtained in earlier studies
[1], [9], [11], [14]. In other earlier studies [8], [12], the value
of M obtained is the same as our result i.e., M = 8, but
the utilization obtained is 0.15 which is less than the result
obtained in our methodology. These results are shown in
Table I.

We next consider a medium-scale network with N = 30
and 40. The best and optimal TDMA schedules obtained

Figure 4. The optimal solution using our proposed method for 30 node
network

(a) The best solution using our proposed method

(b) The optimal solution using CPLEX

Figure 5. Comparison between our proposed method and CPEX for 40
node network

using our BPSO and CPEX are shown in Fig. 4 and 5.
For the network with N = 30, the schedule obtained in
our methodology and CPLEX has 10 (M ) time slots and
the utilization of the whole network (ρ) is 0.123 (37/300).
The same result is obtained in earlier studies [1], [9], [11].
For this N = 30 network, the results obtained in an earlier
study [14], are M = 10 and ρ = 0.12. In other studies
[8], [12], the corresponding values are shown in Table II.
For the network with N = 40, the schedule obtained in
our methodology has 8 (M ) time slots and the utilization
of the whole network (ρ) is 0.213 (68/320). The optimal
solution using CPLEX has 8 time slots and the utilization
of the whole network (ρ) is 0.216 (69/320). For this case,
our methodology produces a schedule that has better ρ
(utilization of the whole network) compared to other studies
[1], [9], [8], [11], [12]. The number of time slots M obtained
is the same (M = 8) in earlier studies [1], [9], [10], [11],
[12], [14], but the value of ρ obtained is less than 0.213. This
shows our methodology performs better than earlier studies.
The results for N = 30 and 40 are shown in Table II.

Now, we consider a large-scale network with N = 100.
We consider a 100 node network with 200 and 300 links.
The TDMA schedule obtained using our BPSO are shown
in Fig. 6 and 7. For the network with N = 100 and 200



Table II
COMPARISON OF OUR RESULTS FOR N = 30 AND 40 NODE NETWORK:

BASED ON NUMBER OF TIME SLOTS M AND UTILIZATION ρ

Algorithm
Node

30 40
M ρ M ρ

CPLEX 10 0.123 8 0.216
Proposed method 10 0.123 8 0.213
Chen[9] 10 0.123 8 0.203
Gunasekaran[14] 10 0.12 8 0.203
Kim[1] 10 0.123 8 0.213
Wang[8] 12 0.108 9 0.197
Wang[10] 10 N/A 8 N/A
Wu[11] 10 0.123 8 0.200
Yeo[12] 11 0.112 8 0.188

links, the schedule obtained in our methodology has 9 (M )
time slots and the utilization of the whole network (ρ) is
0.161 (145/900). The optimal solution using CPLEX has 9
time slots and the utilization of the whole network (ρ) is
0.163 (147/900). For this case, our methodology produces a
schedule that has better ρ (utilization of the whole network)
compared to other studies [1], [6], [11]. The number of time
slots M obtained is the same (M = 9) in earlier studies [1],
[6], [11], but the value of ρ obtained is 0.161. This shows
our methodology performs better than the earlier studies.

For the case of a network with N = 100 and 300
links, the schedule obtained in our methodology has 10 (M )
time slots and the utilization of the whole network (ρ) is
0.115 (115/1000). The optimal solution using CPLEX has
9 time slots and the utilization of the whole network (ρ) is
0.112 (101/900). For this case, our methodology produces a
schedule that has better ρ (utilization of the whole network)
compared to other studies [1], [6], [11]. The number of
time slots obtained M = 10 [1] and M = 11 [6], [11]
in earlier studies. This also shows that our methodology
performs better than the earlier studies. The results obtained
for N = 100, with 200 and 300 links are shown in Table
III.

We would like to mention here that this BPSO does not
guarantee that we obtain the optimal solution for a given
network. However, in our simulation results we are able
to obtain better TDMA schedules (using BPSO) than the
TDMA schedules obtained in earlier studies [1], [6], [9],
[8], [10], [11], [12], [14]. We can also find the best solution
close to the optimal solution within limited computation time
using BPSO while CPLEX needs much longer computation
time to find the optimal solution.

V. CONCLUSION

The broadcast scheduling problem (BSP) is considered
with the objective of obtaining the best/optimal TDMA
schedule. This schedule is to minimize the number of
time slots (M ) and maximize the utilization (ρ). This is
known as BSP and shown as an NP-complete problem in

(a) The best solution using our proposed method

(b) The optimal solution using CPLEX

Figure 6. Comparison between our proposed method and CPEX for 100
nodes with 200 links

(a) The best solution using our proposed method

(b) The optimal solution using CPLEX

Figure 7. Comparison between our proposed method and CPEX for 100
nodes with 300 links

earlier studies. A BPSO for finding an optimum conflict-
free transmission schedule for a broadcast radio network is
presented to this NP-complete problem. Simulation results
are presented for networks of size 15, 30, 40, and 100. Our
results are compared with earlier methods such as genetic
algorithms, mean field annealing or simulated annealing with
valid solution mechanism, neural networks, factor graph
and sum product algorithm, and sequential vertex coloring



Table III
COMPARISON OF OUR RESULTS FOR N = 100 LARGE-SCALE

NETWORK: BASED ON NUMBER OF TIME SLOTS M AND UTILIZATION ρ

Algorithm
Node

100 (200 links ) 100 (300 links)
M ρ M ρ

CPLEX 9 0.163 9 0.112
Proposed method 9 0.161 10 0.115
Chakraborty[6] 9 0.148 11 0.104
Kim[1] 9 0.152 10 0.11
Wu[11] 9 0.151 11 0.109

algorithm. It is shown that our BPSO is able to perform
better than the earlier methods both in minimizing the
number of time slots (M ) and maximizing utilization (ρ).
In our study, a valid solution mechanism is used in BPSO.
We are able to achieve better results even for networks with
100 nodes using proposed BPSO in this paper. The results
obtained using our methodology is compared with all the
other earlier solution methods and CPLEX optimal solution,
in terms of number of used time slots and utilization.
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