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Abstract

This paper present a class of investment problem, in
which many items could be chosen in a group decision envi-
ronment. Usually there is a decision table from the board of
directors after discussions. Most of the data come from their
experience or estimation. The information is redundant and
inaccurate. Swarm-based rough set approach is introduced
to make an attempt to solve the problem. Rough set the-
ory provides a mathematical tool that can be used for both
feature selection and information reduction. The swarm-
based reduction approaches are attractive to find multiple
reducts in the decision systems, which could be applied to
generate multiple investment planning and to improve the
decision. Empirical results illustrate that the approach can
be applied for the class of investment problems effectively.

1 Introduction

Investment problem is one of the most popular issues in

today’s economic life. Usually nobody knows accurately

which investment planning is absolutely right and wise be-

fore the last result is made a showdown. Rough set theory

[1, 2, 3, 4] provides a mathematical tool that can be used

for the inaccurate and redundant information. It helps us to

find out the minimal item sets called ‘reducts’ to make a de-

cision. A good investment planning is from the judgments

of multiple directors or experts. So the reduct of the infor-

mation system is usually not unique. There may be many

subsets of items, which preserve the equivalence class struc-

ture expressed in the information system. Although several

variants of reduct algorithms are reported in the literature,

at the moment, there is no accredited best heuristic reduct

algorithm. What’s more, conventional rough set-based in-

formation reduction usually tries to find a good reduct or to

select a set of features [5].

Particle swarm algorithm is inspired by social behav-

ior patterns of organisms that live and interact within large

groups. In particular, it incorporates swarming behaviors

observed in flocks of birds, schools of fish, or swarms

of bees, and even human social behavior, from which the

Swarm Intelligence (SI) paradigm has emerged [6]. The

swarm intelligent model helps to find optimal regions of

complex search spaces through interaction of individuals

in a population of particles [7, 8, 9, 10]. As an algo-

rithm, its main strength is its fast convergence. It has exhib-

ited good performance across a wide range of applications

[11, 12, 13, 14]. Swarm-based approaches are of great use

in the multiple reduction search, because different individ-

ual trends to be encoded to different reducts. The particle

swarm algorithm is particularly attractive for rough set re-

duction to discover multiple reducts or the best item combi-

nations as they proceed throughout the search space [15].

The main focus of this paper is to investigate swarm-

based rough set reduction algorithm and its application in

finding multiple reducts for the investment problem. The

rest of the paper is organized as follows. Some related terms

and theorems on rough set theory are explained briefly in

Section 3. Particle swarm approach for reduction is intro-

duced in Section 4. The algorithm performance demonstra-

tion are given in Section 5 and finally conclusions are given

in Section 6.

2 Problem Description

It would be related to the company’s survival to decide

how to operate limited investment funds. Usually it depends

on the Board of Directors to discuss the solutions. It is dif-

ficult to draw a unanimous conclusion. They are unwilling

to follow the majority rule simply, since the truth often lies

in the hands of a minority. There would also be great risk
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Table 1. A group decision planning informa-
tion.

Planning estate stock fund bond profit
p1 1 1 1 1 10

p2 2 2 2 1 20

p3 1 1 1 1 10

p4 2 3 2 3 10

p5 2 2 2 1 20

p6 3 1 2 1 10

p7 1 2 3 2 30

p8 2 3 1 2 40

p9 3 1 2 1 20

p10 1 2 3 2 30

p11 3 1 2 1 20

p12 2 3 1 2 40

p13 4 3 4 2 20

p14 1 2 3 2 40

p15 4 3 4 2 30

if they “put all eggs in one basket”. They list all the invest-

ment items and evaluate the profits. Although the president

of the board can make a decision arbitrarily, he/she is re-

luctant to do so for their own benefits and collective bene-

fits reluctantly. They turn to score the potential investment

planning together with some employed experts or consul-

tants. For example, Table 1 shows some investment plan-

ning information. In p4, there would be 2 units of the real

estate investment, 3 units of stock, 2 units of funds, and buy

3 units of the national bonds, then 10 units of expected prof-

its. All the investment planning would not be judged simply

through the expected profits, which are not both accurate

and reliable. It is possible not to isolate completely each in-

vestment in real estate and investment in government bonds.

In the current economic crisis, U.S. Government sells the

national bonds for getting the funds to remedy the real es-

tate market. It is also possible that some of the considered

items make no contribution for the profits.

3 Rough Set Reduction

The basic concepts of rough set theory and its philosophy

are presented and illustrated with examples in [1, 2, 3, 4, 5,

16, 17, 18]. Here, we illustrate only the relevant basic ideas

of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted

in 4-tuple by S = (U,A, V, f), where U is the uni-

verse of discourse, a non-empty finite set of N objects

{x1, x2, · · · , xN}. A is a non-empty finite set of attributes

such that a : U → Va for every a ∈ A (Va is the value set

of the attribute a).

V =
⋃
a∈A

Va

f : U × A → V is the total decision function (also called

the information function) such that f(x, a) ∈ Va for every

a ∈ A, x ∈ U . The information system can also be defined

as a decision table by T = (U,C,D, V, f). For the decision

table, C and D are two subsets of attributes. A = {C ∪D},

C ∩ D = ∅, where C is the set of input features and D is

the set of class indices. They are also called condition and

decision attributes, respectively.

Let a ∈ C∪D, P ⊆ C∪D. A binary relation IND(P ),
called an equivalence (indiscernibility) relation, is defined

as follows:

IND(P ) = {(x, y) ∈ U × U |∀a ∈ P, f(x, a) = f(y, a)}
(1)

The equivalence relation IND(P ) partitions the set U into

disjoint subsets. Let U/IND(P ) denote the family of all

equivalence classes of the relation IND(P ). For simplicity

of notation, U/P will be written instead of U/IND(P ).
Such a partition of the universe is denoted by U/P =
{P1, P2, · · · , Pi, · · · }, where Pi is an equivalence class of

P , which is denoted [xi]P . Equivalence classes U/C and

U/D will be called condition and decision classes, respec-

tively.

Positive Region: Given a decision table T =
(U,C, D, V, f). Let B ⊆ C. The B-positive region

of D is the set of all objects from the universe U which can

be classified with certainty to classes of U/D employing

features from B, i.e.,

POSB(D) =
⋃

X∈U/B∧∀x,y∈X⇒f(x,D)=f(y,D)

X. (2)

Dependency degree: Given a decision table T =
(U,C, D, V, f). For given U/C = {x1, x2, · · · , xn},

U/D = {Y1, Y2, · · · , Ym}, then dependency degree of D
with respect to C is defined as follow:

kC(D) =
1
|U |

m∑
i=1

|POSC(Yi)|. (3)

where |U | is the cardinality of U , POSC(Yi) denotes

the positive region of Yi with respect to C. Obviously,

0 ≤kC(D)≤ 1. If kC(D)=1, D depends totally on C. This

means that the partition generated by C is finer than the par-

tition generated by D. If kC(D)= 0, D is independent totally

of C. It means that C has no effect on decision result for D.

If 0 < kC(D) < 1, we say that D depends partially on C in

degree kC(D).
Significance of attributes: Given a decision table T =
(U,C, D, V, f). The significance of an attribute c (c ∈ C)
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with respect to D is defined as follow:

sigD(c) = kC(D) − kC−{c}(D). (4)

Obviously, 0 ≤sigD(c)≤ 1. If C = {c}, then sigD(c) =
kC(D) − k∅(D) = kC(D), where k∅(D) = 0. The sig-

nificance of an attribute can be evaluated by measuring ef-

fect of removing the attribute from an information table

on decision defined by the Table, which generalizes the

idea of attribute reduction. The two concepts enable us

the evaluation of attributes not only by two-valued scale,

indispensable − dispensable, but by assigning to an at-

tribute a real number from the interval [0, 1] to express its

significance in the decision environment.

Reduct: Given a decision table T = (U,C, D, V, f). The

attribute a ∈ B ⊆ C is D − dispensable in B, if

POSB(D) = POS(B−{a})(D); otherwise the attribute

a is D − indispensable in B. If all attributes a ∈
B are D − indispensable in B, then B will be called

D − independent. A subset of attributes B ⊆ C is a

D − reduct of C, iff POSB(D) = POSC(D) and B is

D − independent. It means that a reduct is the minimal

subset of attributes that enables the same classification of

elements of the universe as the whole set of attributes.

Reduced Positive Universe and Reduced Positive Region:

Given a decision table T = (U,C,D, V, f). Let U/C =
{[u′

1]C , [u
′
2]C , · · · , [u

′
m]C}, Reduced Positive Universe U

′

can be written as:

U
′
= {u′

1, u
′
2, · · · , u

′
m}. (5)

and

POSC(D) = [u
′
i1 ]C ∪ [u

′
i2 ]C ∪ · · · ∪ [u

′
it

]C . (6)

Where ∀u
′
is

∈ U
′

and |[u′
is

]C/D| = 1(s = 1, 2, · · · , t).
Reduced positive universe can be written as:

U
′
pos = {u′

i1 , u
′
i2 , · · · , u

′
it
}. (7)

and ∀B ⊆ C, reduced positive region

POS
′
B(D) =

⋃
X∈U ′/B∧X⊆U ′

pos∧|X/D|=1

X (8)

where |X/D| represents the cardinality of the set X/D.

∀B ⊆ C, POSB(D) = POSC(D) if POS
′
B = U

′
pos

[18]. It is to be noted that U
′

is the reduced universe, which

usually would reduce significantly the scale of datasets. It

provides a more efficient method to observe the change of

positive region when we search the reducts. We do not have

to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine

whether they are equal to each other or not. We only calcu-

late U/C, U
′
, U

′
pos, POS

′
B and then compare POS

′
B with

U
′
pos.

4 Planning Reduction and Selection

Given a decision table T = (U,C,D, V, f), the set of

condition attributes, C, consist of m attributes. We set up

a search space of m dimension for the rough set reduction.

Accordingly each particle’s position is represented as a bi-

nary bit string of length m. Each dimension of the particle’s

position maps one condition attribute. The domain for each

dimension is limited to 0 or 1. The value ‘1’ means the cor-

responding attribute is selected while ‘0’ not selected. Each

position can be “decoded” to a potential reduction solution,

a subset of C. The particle’s position is a series of priority

levels of the attributes. The sequence of the attribute will

not be changed during the iteration. But after updating the

velocity and position of the particles, the particle’s position

may appear real values such as 0.4, etc. It is meaningless

for the reduction. Therefore, we introduce a discrete parti-

cle swarm optimization for this combinatorial problem.

During the search procedure, each individual is evalu-

ated using the fitness. According to the definition of rough

set reduct, the reduction solution must ensure that the deci-

sion ability is the same as the primary decision table and

the number of attributes in the feasible solution is kept

as low as possible. In the proposed algorithm, we first

evaluate whether the potential reduction solution satisfies

POS
′
E = U

′
pos or not (E is the subset of attributes repre-

sented by the potential reduction solution). If it is a feasible

solution, we calculate the number of ‘1’ in it. The solution

with the lowest number of ‘1’ would be selected. For the

particle swarm, the lower number of ‘1’ in its position, the

better the fitness of the individual is.

As a summary, the particle swarm model consists of a

swarm of particles, which are initialized with a popula-

tion of random candidate solutions. They move iteratively

through the d-dimension problem space to search the new

solutions, where the fitness f can be measured by calculat-

ing the number of condition attributes in the potential re-

duction solution. Each particle has a position represented

by a position-vector �pi (i is the index of the particle), and a

velocity represented by a velocity-vector �vi. Each particle

remembers its own best position so far in a vector �p#
i , and

its j-th dimensional value is p#
ij . The best position-vector

among the swarm so far is then stored in a vector �p∗, and its

j-th dimensional value is p∗j . When the particle moves in a

state space restricted to zero and one on each dimension, the

change of probability with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t−1), vij(t−1), p#
ij(t−1), p∗j (t−1)).

(9)

where the probability function is

Γ(vij(t)) =
1

1 + e−vij(t)
. (10)

At each time step, each particle updates its velocity and
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moves to a new position according to Eqs.(11) and (12):

vij(t) = wvij(t − 1) + c1r1(p
#
ij(t − 1) − pij(t − 1))

+ c2r2(p∗j (t − 1) − pij(t − 1)).
(11)

pij(t) =

{
1 if ρ < Γ(vij(t));
0 otherwise.

(12)

Where c1 is a positive constant, called as coefficient of

the self-recognition component, c2 is a positive constant,

called as coefficient of the social component. r1 and r2 are

the random numbers in the interval [0,1]. The variable w is

called as the inertia factor, which value is typically setup to

vary linearly from 1 to near 0 during the iterated processing.

ρ is a random number within the closed interval [0, 1]. From

Eq.(11), a particle decides where to move next, considering

its current state, its own experience, which is the memory of

its best past position, and the experience of its most success-

ful particle in the swarm. The pseudo-code for the particle

swarm search method is illustrated in Algorithm 1. Since

usually the maximum investment is preferable within the

fund limits, the larger planning would be chosen.

Algorithm 1 A Rough Set Reduct Algorithm Based on Par-

ticle Swarm Optimization Algorithm

01.Calculate U
′
, U

′
pos using Eqs.(5) and (7).

02. Initialize the size of the particle swarm n,

02. and other parameters.

03. Initialize the positions and the velocities

03. for all the particles randomly.

04.While (the end criterion is not met) do

05. t = t + 1;

06. Calculate the fitness value of each particle,

06. if POS
′
E 
= U

′
pos, the fitness is punished

06. as the total number of the condition attributes,

06. else the fitness is the number of ‘1’ in the position.

07. �p∗ = argminn
i=1(f(�p∗(t − 1)),

07. f(�p1(t)), f(�p2(t)), · · · , f(�pi(t)), · · · , f(�pn(t)));
08. For i= 1 to n
09. �p#

i (t) = argminn
i=1(f(�p#

i (t − 1)), f(�pi(t));
10. For j = 1 to d
11. Update the j-th dimension value of �pi and �vi

11. according to Eqs.(11) and (12);

12. Next j
13. Next i
14.End While.

5. Algorithm Performance Demonstration

To analyze the effectiveness and performance of the con-

sidered algorithm, we tested the investment problem shown

Table 2. Parameter settings for the algorithm.

Parameter name Value

Swarm size (even)(int)(10 + 2 ∗ sqrt(D))
Self coefficient c1 0.5 + log(2)
Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91

Clamping Coefficient ρ 0.5

Table 3. A decision table.

Planning c1 c2 c3 c4 d
p1 1 1 1 1 1

p2 2 2 2 1 2

p3 1 1 1 1 1

p4 2 3 2 3 1

p5 2 2 2 1 2

p6 3 1 2 1 1

p7 1 2 3 2 3

p8 2 3 1 2 4

p9 3 1 2 1 2

p10 1 2 3 2 3

p11 3 1 2 1 2

p12 2 3 1 2 4

p13 4 3 4 2 2

p14 1 2 3 2 4

p15 4 3 4 2 3

in Table 1. We first transform the gross information to a de-

cision table as shown in Table 3. We reduce and discretize

the expected profits of the planning, since only the relative

values are considered for our algorithm. In our experiments,

the maximum number of iterations was fixed as 10. Each

experiment were repeated 10 times using different random

seeds. Other parameter settings for the algorithm are de-

scribed in Table 2, where D is the dimension of the position

and each dimension maps one condition attribute.

The results (the number of reduced attributes) for 10

PSO runs were all 2. The optimal result is supposed to be 2.

The reduction result for 10 PSO runs are {1, 4} and {2, 3}.

Table 4 depicts the reducts for Table 3. So the planning p15

would be chosen.

6 Conclusions and Future Work

In this paper, we investigated multi-item investment

problem using rough set theory and particle swarm opti-

mization techniques. The considered approaches discov-
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Table 4. A reduction of the data in Table 3.

Reduct Planning c1 c2 c3 c4 d
{1, 4}

p1 1 1 1

p2 2 1 2

p4 2 3 3

p6 3 1 1

p7 1 2 3

p8 2 2 4

p9 3 1 2

p13 4 2 2

p14 1 2 4

p15 4 2 3

{2, 3}
p1 1 1 1

p2 2 2 2

p4 3 2 1

p6 1 2 1

p7 2 3 3

p8 3 1 4

p9 1 2 2

p13 3 4 2

p14 2 3 4

p15 3 4 3

ered the good feature combinations in an efficient way to

observe the change of positive region as the particles ex-

plored the search space. The swarm-based search approach

offer great benefits for multiple reduction, because differ-

ent individuals encode different reducts. The proposed

approach also can obtain multiple candidate solutions for

the reduction. Empirical results illustrated that the swarm-

based search approach was effective to solve the investment

problem.

Our future work is targeted to make an attempt for more

instances and involve more heuristics approaches.
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