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Abstract 

 
In this paper, we present an ensemble combination of two 

genetic programming models namely Linear Genetic 

Programming (LGP) and Multi Expression Programming 

(MEP). The proposed model is designed to assist the 

conventional power control systems with added 

intelligence. For on-line control, voltage and current are 

fed into the network after preprocessing and 

standardization. The model was trained with a 24-hour 

load demand pattern and performance of the proposed 

method is evaluated by comparing the test results with the 

actual expected values. For performance comparison 

purposes, we also used an artificial neural network 

trained by a backpropagation algorithm. Test results 

reveal that the proposed ensemble method performed 

better than the individual GP approaches and artificial 

neural network in terms of accuracy and computational 

requirements. 

1 Introduction 

A wide variety of real time power monitoring /control 

systems are helping the electrical power consumers [1][6]. 

For the monitoring system to be more intelligent, we 

propose the use of an ensemble combination of two 

genetic programming models namely Linear Genetic 

Programming (LGP) and Multi Expression Programming 

(MEP) for predicting the trend of reactive power demand. 

By predicting the reactive power demand it is possible to 

automate the control of reactive power load and better 

utilization of volt-amperes (VA) inflow. Efficient usage 

of the VA loading will not only improve the overall grid 

condition but also reduce the consumer’s industrial tariffs. 

Depending on the predicted reactive power demand, 

power factor corrective measures could be turned on or 

off to control the VA inflow into the plant. This prediction 

system will be extremely useful for automated control of 

power inflow, especially in the countries where there are 

limitations on the usage of consumer’s peak VA 

maximum demand. 

2 Importance of Reactive Power Control 

The ratio of active power (P) measured in watts to the 

apparent power (S) in volt-amperes is termed the power 

factor. It has become a normal practice to say that the 

power factor is lagging when the current lags the supply 

voltage and leading when the current leads the supply 

voltage. This means that the supply voltage is regarded as 

the reference quantity. A majority of loads served by a 

power utility draw current at a lagging power factor. 

When the power factor of the load is unity, active power 

equals apparent power (P = S). But, when the power 

factor of the load is less than unity, say 0.6, the power 

utilized is only 60%. This means that 40% of the apparent 

power is being utilized to supply the reactive power, 

VAR, demand of the system. It is therefore clear that the 

higher the power factor of the load, the greater the 

utilization of the apparent power [4]. For the generating 

and transmission stations, lower the power factor the 

larger must be the size of the source to generate that 

power, and greater must be the cross-sectional area of the 

conductor to transmit it. In other words, the greater is the 

cost of generation and transmission of the power. 

Moreover, lower power factor will also increase the I
2
R (I 

denotes current) losses in lines/equipment as well as result 

in poor voltage regulation [3][5][8]. 

 We considered a heavy automobile industry for 

studying the load demand patterns. The plant works on 3 

shifts of 8 hours duration each. The difference between 

the apparent and active power contributes for the reactive 

power. Observed data for a 24 hour period shows that the 

maximum and minimum VAR requirements are 2.96 

MVAR and 0.014 MVAR, respectively. If suitable power 

factor compensation was made when the reactive power 

demand was increasing, the plant might not have drawn 

much apparent power from the grid. The task is to predict 

the upward and downward trend of the reactive power 

demand and provide required power factor compensation. 

Load flow analysis of the captioned plant reveals that the 

demand patterns are very similar every day (as long as the 

production of automobiles remains fixed). This paper 

presents an ensemble combination of two Genetic 

Programming (GP) models and the performance is 

compared with an artificial neural network trained by a 

backpropagation algorithm. The proposed models were 

trained on the data taken at every minute for a 24-hour 

period to predict the reactive power demand parameters, 

and tested to evaluate the prediction accuracy. 

3  Hybrid Modeling of Intelligent Paradigms 

3.1 Linear Genetic Programming (LGP) 

Linear genetic programming is a variant of the GP 

technique that acts on linear genomes [11]. Its main 



characteristics in comparison to tree-based GP lies in that 

the evolvable units are not the expressions of a functional 

programming language (like LISP), but the programs of 

an imperative language (like c/c ++). An alternate 

approach is to evolve a computer program at the machine 

code level, using lower level representations for the 

individuals. This can tremendously hasten the evolution 

process as, no matter how an individual is initially 

represented, finally it always has to be represented as a 

piece of machine code, as fitness evaluation requires 

physical execution of the individuals. The basic unit of 

evolution here is a native machine code instruction that 

runs on the floating-point processor unit (FPU). Since 

different instructions may have different sizes, here 

instructions are clubbed up together to form instruction 

blocks of 32 bits each. The instruction blocks hold one or 

more native machine code instructions, depending on the 

sizes of the instructions. A crossover point can occur only 

between instructions and is prohibited from occurring 

within an instruction. However the mutation operation 

does not have any such restriction. LGP uses a specific 

linear representation of computer programs. Instead of the 

tree-based GP expressions of a functional programming 

language (like LISP) programs of an imperative language 

(like C) are evolved. A LGP individual is represented by a 

variable-length sequence of simple C language 

instructions. Instructions operate on one or two indexed 

variables (registers) r, or on constants c from predefined 

sets. The result is assigned to a destination register, for 

example, ri = rj* c. Here is an example LGP program: 

 

void LGP(double v[8]) 

[0] = v[5] + 73; 

v[7] = v[3] – 59; 

if (v[1] > 0) 

if (v[5] > 21) 

v[4] = v[2] . v[1]; 

v[2] = v[5] + v[4]; 

v[6] = v[7] . 25; 

v[6] = v[4] – 4; 

v[1] = sin(v[6]); 

if (v[0] > v[1]) 

v[3] = v[5] . v[5]; 

v[7] = v[6] . 2; 

v[5] = v[7] + 115; 

if (v[1] <= v[6]) 

v[1] = sin(v[7]); 

} 

A LGP can be turned into a functional 

representation by successive replacements of variables 

starting with the last effective instruction. The maximum 

number of symbols in a LGP chromosome is 4 * Number 

of instructions. 

Evolving programs in a low-level language 

allows us to run those programs directly on the computer 

processor, thus avoiding the need of an interpreter. In this 

way the computer program can be evolved very quickly. 

An important LGP parameter is the number of registers 

used by a chromosome. The number of registers is usually 

equal to the number of attributes of the problem. If the 

problem has only one attribute, it is impossible to obtain a 

complex expression such as the quartic polynomial. In 

that case we have to use several supplementary registers. 

The number of supplementary registers depends on the 

complexity of the expression being discovered. An 

inappropriate choice can have disastrous effects on the 

program being evolved. LGP uses a modified steady-state 

algorithm. The initial population is randomly generated. 

The following steps are repeated until a termination 

criterion is reached: Four individuals are randomly 

selected from the current population. The best two of 

them are considered the winners of the tournament and 

will act as parents. The parents are recombined and the 

offspring are mutated and then replace the losers of the 

tournament. We used a LGP technique that manipulates 

and evolves a program at the machine code level. The 

settings of various linear genetic programming system 

parameters are of utmost importance for successful 

performance of the system. The population space has been 

subdivided into multiple subpopulation or demes. 

Migration of individuals among the subpopulations causes 

evolution of the entire population. It helps to maintain 

diversity in the population, as migration is restricted 

among the demes. Moreover, the tendency towards a bad 

local minimum in one deme can be countered by other 

demes with better search directions. The various LGP 

search parameters are the mutation frequency, crossover 

frequency and the reproduction frequency: The crossover 

operator acts by exchanging sequences of instructions 

between two tournament winners. Steady state genetic 

programming approach was used to manage the memory 

more effectively. 
 

3.2. Multi Expression Programming (MEP) 

MEP genes are (represented by) substrings of a variable 

length [9][10]. The number of genes per chromosome is 

constant. This number defines the length of the 

chromosome. Each gene encodes a terminal or a function 

symbol. A gene that encodes a function includes pointers 

towards the function arguments. Function arguments 

always have indices of lower values than the position of 

the function itself in the chromosome. This representation 

ensures that no cycle arises while the chromosome is 

decoded (phenotypically transcripted). According to the 

proposed representation scheme, the first symbol of the 

chromosome must be a terminal symbol. In this way, only 

syntactically correct programs (MEP individuals) are 

obtained. An example of chromosome using the sets F= 

{+, *} and T= {a, b, c, d} is given below: 

1: a 

2: b 

3: + 1, 2 

4: c 

5: d 



6: + 4, 5 

7: * 3, 6 

The maximum number of symbols in MEP chromosome 

is given by the formula: 

Number_of_Symbols = (n + 1) * (Number_of_Genes – 1) 

+ 1, 

where n is the number of arguments of the function with 

the greatest number of arguments. The maximum number 

of effective symbols is achieved when each gene 

(excepting the first one) encodes a function symbol with 

the highest number of arguments. The minimum number 

of effective symbols is equal to the number of genes and it 

is achieved when all genes encode terminal symbols only. 

The translation of a MEP chromosome into a computer 

program represents the phenotypic transcription of the 

MEP chromosomes. Phenotypic translation is obtained by 

parsing the chromosome top-down. A terminal symbol 

specifies a simple expression. A function symbol specifies 

a complex expression obtained by connecting the 

operands specified by the argument positions with the 

current function symbol. 

For instance, genes 1, 2, 4 and 5 in the previous 

example encode simple expressions formed by a single 

terminal symbol. These expressions are: 

E1 = a, 

E2 = b, 

E4 = c, 

E5 = d, 

Gene 3 indicates the operation + on the operands 

located at positions 1 and 2 of the chromosome. Therefore 

gene 3 encodes the expression: E3 = a + b. Gene 6 

indicates the operation + on the operands located at 

positions 4 and 5. Therefore gene 6 encodes the 

expression: E6 = c + d. Gene 7 indicates the operation * 

on the operands located at position 3 and 6. Therefore 

gene 7 encodes the expression: E7 = (a + b) * (c + d). E7 is 

the expression encoded by the whole chromosome. 

There is neither practical nor theoretical evidence that one 

of these expressions is better than the others. This is why 

each MEP chromosome is allowed to encode a number of 

expressions equal to the chromosome length (number of 

genes). The chromosome described above encodes the 

following expressions: 

E1 = a, 

E2 = b, 

E3 = a + b, 

E4 = c, 

E5 = d, 

E6 = c + d, 

E7 = (a + b) * (c + d). 

The value of these expressions may be computed 

by reading the chromosome top down. Partial results are 

computed by dynamic programming and are stored in a 

conventional manner. 

Due to its multi expression representation, each 

MEP chromosome may be viewed as a forest of trees 

rather than as a single tree, which is the case of Genetic 

Programming. 

Fitness assignment 

As MEP chromosome encodes more than one problem 

solution, it is interesting to see how the fitness is assigned. 

The chromosome fitness is usually defined as the fitness 

of the best expression encoded by that chromosome. For 

instance, if we want to solve symbolic regression 

problems, the fitness of each sub-expression Ei may be 

computed using the formula:  
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where ok,i is the result obtained by the expression Ei for 

the fitness case k and wk is the targeted result for the 

fitness case k. In this case the fitness needs to be 

minimized. The fitness of an individual is set to be equal 

to the lowest fitness of the expressions encoded in the 

chromosome: 

When we have to deal with other problems, we 

compute the fitness of each sub-expression encoded in the 

MEP chromosome. Thus, the fitness of the entire 

individual is supplied by the fitness of the best expression 

encoded in that chromosome. 

 

3.3. Ensemble Modeling of LGP and MEP 
Our goal is to optimize two error measures namely Root 

Mean Squared Error (RMSE) and Correlation Coefficient 

(CC): 
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 The task is to have minimal value of RMSE 

and a maximum value for CC. The objective is to 

carefully construct the different GP models to achieve the 

best generalization performance. Test data is then passed 

through these individual models and the corresponding 

outputs are recorded. Suppose results obtained by LGP 

and MEP are an and bn respectively and the corresponding 

desired value is xn. The task is to combine an and bn so as 

to get the best output value that maximizes the CC and 

minimizes the RMSE values.  

 We consider this problem as a multiobjective 

optimization problem in which we want to find solution of 

this form: (coef1, coef2), where coef1, and coef2 are real 

numbers between - 1 and 1, so as the resulting 

combination: coef1*an + coef2*bn 

would be close to the desired value xn. This means, in fact, 

to find a solution so that to simultaneously optimize 

RMSE and CC. This problem is equivalent to find the 

Pareto solutions of a multiobjective optimization problem. 



In our situation, the objectives are RMSE and CC. We use 

for this problem a well known Multiobjective 

Evolutionary Algorithm (MOEA) – Nondominated 

Sorting Genetic Algorithm II (NSGAII) [12]. A short 

description of this algorithm is given below. 

 

3.3.1 Nondominated Sorting Genetic Algorithm II 

(NSGA II)  

 

K. Deb et al. [12] suggested a fast elitist Nondominated 

Sorting Genetic Algorithm (NSGA II). In NSGA II, for 

each solution x the number of solutions that dominate 

solution x is calculated. The set of solutions dominated by 

x is also calculated. The first front (the current front) of 

the solutions that are nondominated is obtained. 

Let us denote by Si the set of solutions that are 

dominated by the solution x
i
. For each solution x

i
 from the 

current front consider each solution x
q
 from the set Si. The 

number of solutions that dominates x
q 

is reduced by one. 

The solutions which remain non-dominated after this 

reduction will form a separate list. This process continues 

using the newly identified front as the current front. Let 

P(0) be the initial population of size N. An offspring 

population Q(t) of size N is created from current 

population P(t). Consider the combined population R(t) = 

P(t) ∪ Q(t). 

Population R(t) is ranked according to 

nondomination. The fronts F1, F2, ... are obtained. New 

population P(t+1) is formed by considering individuals 

from the fronts F1, F2, ..., until the population size exceeds 

N. Solutions of the last allowed front are ranked 

according to a crowded comparison relation. 

NSGA II uses a parameter (called crowding 

distance) for density estimation for each individual. 

Crowding distance of a solution x is the average side-

length of the cube enclosing the point without including 

any other point in the population. Solutions of the last 

accepted front are ranked according to the crowded 

comparison distance. NSGA II works as follows. Initially 

a random population, which is sorted based on the 

nondomination, is created. Each solution is assigned a 

fitness equal to its nondomination level (1 is the best 

level). Binary tournament selection, recombination and 

mutation are used to create an offspring population. A 

combined population is formed from the parent and 

offspring population. The population is sorted according 

to the nondomination relation. The new parent population 

is formed by adding the solutions from the first front and 

the followings until exceed the population size. Crowding 

comparison procedure is used during the population 

reduction phase and in the tournament selection for 

deciding the winner.  

3.4 Artificial Neural Network Model 

Artificial Neural Networks (ANNs) have been developed 

as generalizations of mathematical models of biological 

nervous systems. A neural network is characterized by the 

network architecture, the connection strength between 

pairs of neurons (weights), node properties, and updating 

rules. The updating or learning rules control weights 

and/or states of the processing elements (neurons). The 

network is initially randomized to avoid imposing any of 

our own prejudices about an application on the network. 

4.  Experiment Setup, Analysis and Results 

The experiment system consists of two stages: Model 

construction/network training and performance 

evaluation. A heavy automobile manufacturing plant was 

considered for the prediction of reactive power. All the 

training data were standardized before training. The input 

parameters considered are the Voltage (V) and Current (I). 

We randomly fluctuated the input parameter voltage (V) 

+/- 2.5% of the normal value to cater for worst conditions 

in the grid voltage regardless of the plant load. This also 

tests the learning ability of ANN during worst situations. 

Figures 1 and 2 show the input parameters V and I of the 

test data. 

 

 
 

Figure 1. Test data- input voltage (+/- 30%) 

 
 

Figure 2. Test data- load current (amperes) 

4.1 Parameter settings 

For ANN, we used a feedforward network with 2 hidden 

layers in parallel, 2 input neurons corresponding to the 

input variables and 1 output neuron. The network was 

trained using 60% of the data and the remaining 40% data 

was used for testing and validation. Initial weights, 

learning rate and momentum used were 0.3, 0.1 and 0.1, 

respectively.  
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Figure 3. Comparison between ANN, MEP, LGP and ensemble 

 

The training was terminated after 1500 epochs. Parameters 

used by MEP, LGP and Ensemble between LGP and MEP 

using NSGA II are depicted in Table 1, Table 2 and Table 3 

respectively. 

 

Table 1. Parameters used by MEP 

Parameter  Value 

Population size 50 

Chromosome length 40 

Number of generations 150 

Crossover probability 0.9 

Number of mutations/chromosome 3 

Number of constants 10 

 

 

Table 2. Parameters used by LGP 

Parameter  Value 

Population size 100 

Mutation frequency 95% 

Number of demes 10 

Crossover frequency 50% 

Number of constants 60 

 

Table 3. Parameters used by Ensemble 

Parameter  Value 

Population size 250 

Number of generations 500 

Crossover probability 0.5 



4.2 Comparison of results 

Table 4 shows the comparative performance of ANN, MEP, 

LGP and ensemble between LGP and MEP for the reactive 

power prediction problem. 

 

Table 4. Reactive power prediction performance 

 

 ANN MEP LGP Ensemble 

RMSE 0.01210 0.0141 0.01104 0.0106 

CC 0.9992 0.996 0.994 0.9999 

From the experimental results, it is clear that the results 

obtained by the ensemble between GP techniques 

outperformed each of the individual techniques (LGP, MEP 

and neural network) in terms of performance time and error 

achieved. In Figure 3 the graphical comparison between 

ANN, MEP, LGP and Ensemble is presented.  

5. Conclusions 

This paper presented three techniques for the reactive 

power prediction problem. The ANN was clearly dominated 

by the GP techniques. We also combined the two GP 

techniques used so that to optimizes the error. The different 

GP techniques (LGP and MEP) were combined using an 

ensemble approach by an evolutionary multiobjective 

algorithm so as to simultaneously optimize the RMSE and 

CC. We evolved a set of coefficients in order to obtain an 

ensemble combination of the two techniques by applying a 

well known multiobjective evolutionary algorithm called 

NSGA II. Empirical results also illustrate that a 

combination of these techniques is very useful. The results 

obtained by an ensemble of these paradigms clearly 

outperform results obtained by each technique individually. 

For this problem, we considered random values of 

input parameter voltage to test the learning ability of 

connectionist systems during worst conditions. The 

performance could have been even better if the observed 

rather than fluctuated values of voltage were used. 

Moreover, the considered connectionist models are very 

robust, capable of handling the noisy and approximate data 

that are typical in power systems, and therefore should be 

more reliable during worst conditions.  
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