
Fuzzy Adaptive Turbulent Particle Swarm Optimization

Hongbo Liu
Department of Computer Science

Dalian University of Technology, Dalian, China
lhb@dlut.edu.cn

Ajith Abraham
School of Computer Science and Engineering

Chung-Ang University, Seoul, Korea
ajith.abraham@ieee.org

Abstract

In this paper, we introduce Turbulence in the Particle
Swarm Optimization (TPSO) and illustrate how this ap-
proach could be used for function optimization problems
involving high dimensions. The proposed algorithm uses a
minimum velocity threshold to control the velocity of par-
ticles. TPSO mechanism is similar to a turbulent pump,
which supplies some power to the swarm system to explore
new search spaces (better solutions). The minimum veloc-
ity threshold of the particles is tuned adaptively by using
a fuzzy logic controller, which is further called as Fuzzy
Adaptive TPSO (FATPSO). We evaluate and compare the
performance of SPSO (Standard PSO), TPSO and FATPSO.
Empirical results clearly demonstrate that the performance
of SPSO degrades remarkably with the increase in the di-
mensions of the problem, while the influence is very little in
the case of TPSO and FATPSO.

1. Introduction

Particle Swarm Optimization (PSO) is inspired by
swarm intelligence and theory in general such as bird flock-
ing, fish schooling and even human social behavior [1].
It could be applied to various function optimization prob-
lems, or the problems that can be transformed to the func-
tion optimization problems. PSO has exhibited good perfor-
mance across a wide range of applications [2, 3, 4]. How-
ever, its performance deteriorates as the dimensionality of
the search space increases, especially for multi-modal opti-
mization problems. PSO often demonstrates faster conver-
gence speed in the first phase of the search, and then slows
down or even becomes stagnant as the number of iterations
are increased. Once the algorithm slows down, it is diffi-
cult to achieve better fitness values (good solutions). Re-
cently, several investigations have been undertaken to im-
prove the performance of standard PSO (SPSO). Lobjerg et
al. [5] presented a hybrid PSO model with breeding and sub-
populations. Mahfouf et al. [6] proposed adaptive weighted

swarm optimization, which introduced a new update of the
weight. In chaotic particle swarm optimization proposed by
Jiang and Etorre [7], the objective was to introduce chaos
theory so that chaotic mapping enjoys certainty, ergodicity
and stochastic property to improve the exploration ability of
the algorithm.

In this paper, we introduce turbulence in the conventional
Particle Swarm Optimization (TPSO) algorithm to over-
come the premature convergence problem. The basic idea
is to drive those lazy particles and get them to explore new
search spaces. TPSO uses a minimum velocity threshold to
control the velocity of particles and also avoids clustering of
particles and maintains diversity of population in the search
space. The minimum velocity threshold of the particles is
tuned adaptively by using a fuzzy logic controller, which is
further called as Fuzzy Adaptive TPSO (FATPSO).

2 Turbulent Particle Swarm Optimization
(TPSO)

2.1 Velocity Update of the Particles

The standard PSO model consists of a swarm of parti-
cles, which are initialized with a population of random can-
didate solutions. Each particle has a position represented
by a position-vector, a velocity represented by a velocity-
vector. They move iteratively through thed-dimension
problem space to search the new solutions, where the fit-
ness,f , can be calculated as a certain qualities measure. A
particle decides where to move next, considering its own ex-
perience, which is the memory of its best past position, and
the experience of its most successful particle in the swarm.
The particle searches the solutions in the problem space
with a range[−s, s] (If the range is not symmetrical, it can
be translated to the corresponding symmetrical range). In
order to guide the particles effectively in the search space,
the maximum moving distance during one iteration and its
moving range must be clamped in between the maximum
velocity. Interested readers could refer to Kennedy and
Eberhart [1] for more details.



Some previous studies have discussed the trajectory of
particles and the convergence of the algorithm [8, 9]. It has
been shown that the trajectories of the particles oscillate in
different sinusoidal waves and converge quickly, sometimes
prematurely. During each iteration, the particle is attracted
towards the location of the best fitness achieved so far by the
particle itself and by the location of the best fitness achieved
so far across the whole swarm. The particle could even-
tually loose the exploration capabilities in the future itera-
tions. Such situations could occur even in the early stages
of the search. In fact, this does not even guarantee that the
algorithm has converged to a local minimum and it merely
means that all the particles have converged to the best posi-
tion discovered so far by the swarm.

One of the main reason for premature convergence of
PSO is due to the stagnation of the particles exploration of
a new search space. We propose a strategy to drive those
lazy particles and let them explore better solutions. If a par-
ticle’s velocity decreases to a thresholdvc, a new velocity is
assigned using (2). Thus, we present the turbulent particle
swarm optimization using a new velocity update equation:

vij(t + 1) = wv̂ + c1r1(x
#
ij(t)− xij(t))

+ c2r2(x∗j (t)− xij(t))
(1)

v̂ =

{
vij if |vij | ≥ vc

u(−1, 1)vmax/ρ if |vij | < vc

(2)

xij(t + 1) = xij(t) + vij(t + 1) (3)

whereu(−1, 1) is the random number, uniformly dis-
tributed with the interval [-1,1], andρ is the scaling factor
to control the domain of the particle’s oscillation accord-
ing to vmax. vc is the minimum velocity threshold, a tun-
able threshold parameter to limit the minimum of the parti-
cles’ velocity. The performance of the algorithm is directly
correlated to two parameter values,vc andρ. A large vc

shortens the oscillation period, and it provides a great prob-
ability for the particles to leap over local minima using the
same number of iterations. But a largevc compels particles
in the quick “flying” state, which leads them not to search
the solution and forcing them not to refine the search. In
other words, a largevc facilitates a global search while a
smaller value facilitates a local search. By changing it dy-
namically, the search ability is dynamically adjusted. The
value ofρ changes directly the particle oscillation domain.
It is possible for particles not to jump over the local min-
ima if there would be a large local minimum available in
the objective search space. But the particle trajectory would
more prone to oscillate because of a smaller value ofρ. For
the desired exploration-exploitation trade-off, we divide the
particle search into three stages. In the first stage the values
for vc andρ are set at large and small values respectively.

In the second stage,vc andρ are set at medium values and
in the last stage,vc is set at a small value andρ is set at
a large value. This enable the particles to take very large
steps to explore solutions in the early stages, by scanning
the whole solution space for good local minima and then in
the final stages particles perform a fine grain search. The
use of fuzzy logic would be suitable for dynamically tun-
ing the velocity threshold, since it starts a run with an initial
value which is changed during the run. By using the fuzzy
control approach, the parameters can be adaptively regu-
lated according to the problem environment.

2.2 Fuzzy Parameter Control

An Fuzzy Logic Controller (FLC) is composed of a
knowledge base, that includes the information given by the
expert in the form of linguistic control rules, a fuzzifica-
tion interface, which has the effect of transforming crisp
data into fuzzy sets, an inference system, that uses them to-
gether with the knowledge base to make inference by means
of a reasoning method, and a defuzzification interface, that
translates the fuzzy control action thus obtained to a real
control action using a defuzzification method [10]. In our
algorithm, two variables are selected as inputs to the fuzzy
system: the Current Best Performance Evaluation (CBPE)
[11] and the Current Velocity (CV ) of the particle. For
adapting to a wide range of optimization problems,CBPE
is normalized as (4):

NCBPE =
CBPE − CBPEmin

CBPEmax − CBPEmin
(4)

where CBPEmin is the estimated (or real) minimum,
CBPEmax is the worst solution to the minimization prob-
lem, which usually is theCBPE at half the number of iter-
ations. If we do not have any prior information about the ob-
jective function and if it is difficult to estimateCBPEmin

andCBPEmax, we can do some preliminary experiments
by decreasing linearly from 1 to 0 during the run. One of
the output variables isρ, the scaling factor to control the
domain of the particle’s oscillation. Another isV ck, which
controls the change of the velocity threshold according to
(5):

vc = e− [10(1 + V ck)] (5)

The fuzzy inference system is listed as follows:
[System]
Name=‘FATPSO’
Type=‘mamdani’
Version=2.0
NumInputs=2
NumOutputs=2
NumRules=6
AndMethod=‘min’
OrMethod=‘max’



ImpMethod=‘min’
AggMethod=‘max’
DefuzzMethod=‘centroid’

[Input1] Name=‘NCBPE’
Range=[0 1]
NumMFs=3
MF1=‘Low’:‘gaussmf’, [0.005 0]
MF2=‘Medium’:‘gaussmf’, [0.03 0.1]
MF3=‘High’:‘gaussmf’, [0.25 1]

[Input2]
Name=‘CV’
Range=[0 1e-006]
NumMFs=2
MF1=‘Low’:‘trapmf’, [0 0 1e-030 1e-020]
MF2=‘High’:‘trapmf’, [1e-010 1e-008 1e-006 1e-006]

[Output1]
Name=‘Vck’
Range=[-1 2.2]
NumMFs=3
MF1=‘Low’:‘trimf’, [-1 -0.8 -0.5]
MF2=‘Medium’:‘trimf’, [-0.6 0 0.2]
MF3=‘High’:‘trimf’, [0.1 1.1 2.2]

[Output2]
Name=‘ρ’
Range=[1 120]
NumMFs=3
MF1=‘Small’:‘trimf’, [1 1 4]
MF2=‘Medium’:‘trimf’, [2.214 10.71 59.29]
MF3=‘Large’:‘trimf’, [47.15 120 120]

[Rules]
1 1, 3 0 (1) : 1
2 0, 2 0 (1) : 1
3 2, 1 0 (1) : 1
1 1, 0 3 (1) : 2
2 0, 0 2 (1) : 2
3 2, 0 1 (1) : 2

In the list, there are three parts: the first part is the config-
uration of the fuzzy system, the second one is the definition
of the membership functions, and the third one is the rule
base. There are two inputs and two outputs based on six
rules. In the rule base, the first two columns correspond to
the input variables, the second two columns correspond to
the output variables, the fifth column displays the weight
applied to each rule, and the sixth column is short form that
indicates whether this is an AND (1) rule or an OR (2) rule.
The numbers in the first four columns refer to the index
number of the membership function, in which the number

1 encodes fuzzy set ‘Low’, 2 encodes ‘Medium’, and 3 en-
codes ‘High’. For example, the first rule is “If (NCBPE is
Low) and (CV is Low) then (Vck is High) with the weight
1.”

The general structure of the FATPSO algorithm is as
follows:
Begin FATPSO
Initialize parameters and the particles
While (the end criterion is not met) do

t = t + 1
Calculate the fitness value of each particle
x∗ = argminn

i=1(f(x∗(t− 1)), f(x1(t)), f(x2(t)),
· · · , f(xi(t)), · · · , f(xn(t)))

For i= 1 ton
x#

i (t) = argminn
i=1(f(x#

i (t− 1)), f(xi(t))
For j = 1 toDimension

If abs(vij) < 1e− 6
Obtain the velocity threshold
{

fismat = readfis(‘FATPSO.fis’)
FO = evalfis([NCBPE CV ], fismat)

}
Endif
Update thej-th dimension value of~xi and~vi

according to equations (1, 2 and 3)
Next j

Next i
End While
End FATPSO

3. Experiment settings, Results and Discus-
sions

In our experiments, the algorithms used for compari-
son were SPSO (standard PSO), TPSO (turbulent PSO)
and FATPSO (Fuzzy Adaptive TPSO). Each algorithm was
tested using three numerical functions. The first function,
namely Quadric function, has a single minimum, the sec-
ond one is highly multimodal with multiple local minima,
and the third one has dimensional effect (i ∗ xi) with noise.
We tested the algorithms exploring 30, 100 and 200 dimen-
sions. For each of these functions, the goal was to find the
global minima. The parametersc1 andc2 were set to 1.49
for all the PSO algorithms. Inertia weightw was decreased
linearly from 0.9 to 0.1 for SPSO whilew is set as a con-
stant 0.7 in TPSO and FATPSO. In TPSO,ρ andvc were set
to three-pairs of different values for 5000, 1000 and 15000
iterations as shown in Table 1.vmax was set tos, the range
of the function domain. In FATPSO,CBPEmin was set to
0, andCBPEmax was set equal to the value of CBPE (ob-
tained during the first half of the number of iterations) for
the second half of the number of iterations. In other words,



Table 1. Comparing the results for the func-
tion optimization problems.

5,000 10,000 15,000
f

vc ρ vc ρ vc ρ
f1 1e− 6 2 1e− 10 10 1e− 20 100
f2 1e− 8 2 1e− 10 5 1e− 15 10
f3 1e− 7 2 1e− 10 5 1e− 20 10

CBPEmax decreased during the first-half of iterations, and
stood during the second-half of the number of iterations. All
experiments (for each benchmark) were repeated 10 times
with different random seeds. Each trial had a fixed number
of 20,000 iterations. The objective functions were evaluated
400,000 times during each trial, because the swarm size in
all PSO algorithms were set to 20. The average fitness val-
ues of the best solutions throughout the optimization run
were recorded. The averages and the standard deviations
were calculated from the 10 different trials. The standard
deviation indicates the differences in the results during the
10 different trials.

Benchmark functions:

• Quadric function:
f1 =

∑n
i=1(

∑i
j=1 xj)2

~x ∈ [−100, 100]n, min(f1(~x∗)) = f1(~0) = 0.

• Rastrigin function:
f2 =

∑n
i=1(x

2
i − 10cos(2πxi) + 10)

~x ∈ [−5.12, 5.12]n, min(f2(~x∗)) = f2(~0) = 0.

• Quartic function with noise:
f3 =

∑n
i=1(ix

4
i ) + random[0, 1)

~x ∈ [−1.28, 1.28]n, min(f3(~x∗)) = f3(~0) = 0.

Figures 1 to 9 illustrate the mean best function values
for the ten functions with three different dimensions (i.e.
30-D, 100-D and 200-D) using the three algorithms. Each
algorithm for different dimensions of the same objective
function has similar performance. The higher the dimen-
sion is, the higher the fitness values are. It is evident that
the conventional PSO performance degrades for higher di-
mensions and the solutions usually get trapped in a local
minimum much earlier than the complete 2000 iterations.
TPSO and FATPSO have sustaining search process for bet-
ter solutions and almost are not influenced by increasing the
dimensions of the problem. TPSO and FATPSO both out-
perform SPSO significantly. In general, the performance of
FATPSO was slightly better than TPSO. Although the final
results of FATPSO were not much better than the TPSO, at
least we need not have to set the values for the minimum

Figure 1. 30-D Quadric ( f1) function perfor-
mance.

Figure 2. 100-D Quadric ( f1) function perfor-
mance.

velocity thresholdvc and the scaling factorρ. The averages
and the standard deviations for 10 trials are depicted in Ta-
ble 2. Larger the averages are, wider the standard deviations
are usually. Not much differences in the standard devia-
tions are observed for the different algorithms for the same
benchmark functions. Referring to the empirical results, for
most of considered functions FATPSO demonstrated a con-
sistent performance pattern among all the considered algo-
rithms.

4. Conclusions

In this paper, we introduced the Turbulent Particle
Swarm Optimization (TPSO) as an alternative method
for high dimension problem to overcome the problem of
premature convergence in the conventional PSO algorithm.
TPSO uses a minimum velocity threshold to control the
velocity of particles. TPSO mechanism is similar to a



Figure 3. 200-D Quadric ( f1) function perfor-
mance.

Figure 4. 30-D Rastrigin ( f2) function perfor-
mance.

Figure 5. 100-D Rastrigin ( f2) function perfor-
mance.

Figure 6. 200-D Rastrigin ( f2) function perfor-
mance.

Figure 7. 30-D Quartic with Noise ( f3) function
performance.

Figure 8. 100-D Quartic with Noise ( f3) func-
tion performance.



Figure 9. 200-D Quartic with Noise ( f3) func-
tion performance.

turbulence pump, which supply some power to the swarm
system. The basic idea is to control the velocity of the
particles to get out of possible local optima and continue
exploring optimal search spaces. The minimum velocity
threshold can make the particle continue moving until
the algorithm converges. We evaluated and compared
the performance of SPSO, TPSO and FAPSO using the
different benchmark functions for higher dimensions. The
results from our research demonstrate that the performance
of SPSO remarkably degrades according to the increase in
the dimensions, while the influence is very little in the case
of TPSO and FATPSO.

Acknowledgments

This work was supported by NSFC (60373096), MOE
(KP0302) and MOST (2001CCA00700). The second au-
thor acknowledges the support received from the Interna-
tional Joint Research Grant of the IITA (Institute of Infor-
mation Technology Assessment) foreign professor invita-
tion program of the Ministry of Information and Communi-
cation, South Korea.

References

[1] J. Kennedy and R. Eberhart,Swarm intelligence,Morgan
Kaufmann Publishers, Inc., San Francisco, CA. 2001.

[2] K. E. Parsopoulos and M. N. Vrahatis, “Recent Approaches
to Global Optimization Problems through Particle Swarm Op-
timization”, Natural Computing,Kluwer Academic Publish-
ers, 1, 2002, pp. 235-306.

[3] T. Ting, M. Rao, C. K. Loo and S. S. Ngu, “Solving Unit
Commitment Problem Using Hybrid Particle Swarm Opti-
mization”, Journal of Heuristics, Kluwer Academic Pub-
lishers, 9, 2003, pp. 507-520.

[4] D. W. Boeringer and D. H. Werner, “Particle Swarm Opti-
mization versus Genetic Algorithms for Phased Array Syn-

Table 2. Comparing the results for the func-
tion optimization problems.

f D SPSO TPSO FAPSO
1.3989e+005 0.3152 0.2986

30 ±1.0432e+005 ±0.5708 ±0.4154
8.9865e+005 9.3231 6.8493

f1 100 ±6.3507e+005 ±12.9035 ±9.2521
2.4444e+006 137.2367 45.2474

200 ±1.3719e+006 ±259.2582 ±61.9466
39.4998 0.0022 6.7117e-004

30 ±13.1666 ±0.0057 ±0.0010
361.1619 0.0020 0.0011

f2 100 ±62.9856 ±0.0043 ±0.0013
1.1873e+003 0.0020 0.0022

200 ±129.7462 ±0.0031 ±0.0035
0.0053 0.0016 0.0010

30 ±0.0021 ±0.0013 ±7.8158e-004
0.5886 0.0037 0.0029

f3 100 ±0.3916 ±0.0023 ±0.0017
24.6138 0.0058 0.0053

200 ±18.5729 ±0.0029 ±0.0034

thesis”, IEEE Transactions on Antennas and Propagation,
IEEE press, 52(3), 2004, pp. 771-779.

[5] M. Lobjerg, T. K. Rasmussen and K. Krink, “Hybrid particle
swarm optimizer with breeding and subpopulations”. In: Pro-
ceedings of the Third Genetic and Evolutionary Computation
Conference, IEEE press, 1, 2001, pp. 469-476.

[6] M. Mahfouf , M. Y. Chen and D. A. Linkens, “Adaptive
Weighted Swarm Optimization for Multiobjective Optimal
Design of Alloy Steels”, In: X. Yao, et al. (eds.), Lecture
Notes in Computer Science, Springer-Verlag Heidelberg,
PPSN VIII, LNCS 3242, 2004, pp. 762-771.

[7] C. W. Jiang and B. Etorre, “A Hybrid Method of Chaotic
Particle Swarm Optimization and Linear Interior for Reactive
Power Optimisation”,Mathematics and Computers in Simu-
lation, Elsevier, 2005, 68, pp.57-65.

[8] M. Clerc and J. Kennedy, “The Particle Swarm-Explosion,
Stability, and Convergence in a Multidimensional Complex
Space”, IEEE Transactions on Evolutionary Computation,
IEEE press, 6(1), 2002, pp. 58-73.

[9] T. I. Cristian, “The Particle Swarm Optimization Algorithm:
Convergence Analysis and Parameter Selection”,Information
Processing Letters,Elsevier, 85(6), 2003, pp. 317-325.

[10] Y. S Yun and M. Gen, “Performance Analysis of Adaptive
Genetic Algorithms with Fuzzy Logic and Heuristics”,Fuzzy
Optimization and Decision Making,Kluwer Academic Pub-
lishers, 2, 2003, pp. 161-175.

[11] Y. H. Shi and R. C. Eberhart, “Fuzzy Adaptive Particle
Swarm Optimization”, Proceedings of IEEE International
Conference on Evolutionary Computation,IEEE, 2001, pp.
101-106.


